Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleCELLULAR AND MOLECULAR

Dopamine Modulation of Membrane Excitability in Striatal Spiny Neurons is Altered in DARPP-32 Knockout Mice

Shao-Pii Onn, Allen A. Fienberg and Anthony A. Grace
Journal of Pharmacology and Experimental Therapeutics September 2003, 306 (3) 870-879; DOI: https://doi.org/10.1124/jpet.103.050062
Shao-Pii Onn
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Allen A. Fienberg
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Anthony A. Grace
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The phosphoprotein DARPP-32 (dopamine and cAMP-regulated phosphoprotein 32 kDa) plays a central role in mediating the actions of a variety of neurotransmitters in medium spiny neurons of the striatum (Greengard, 1990; Fienberg et al., 1998). This study examines D1 and D2 dopamine (DA) agonist effects on the membrane properties of identified striatal neurons recorded in slices obtained from wild-type and DARPP-32-knockout mice. In wild-type spiny cells, DA D1 receptor activation decreased cell excitability, causing a 58.8 ± 13.5% increase in rheobase current required to evoke spike discharge. In contrast, D1 agonist administration did not alter cell excitability when applied to spiny cells in slices prepared from the DARPP-32 knockout mice. D2 agonist administration decreased cell excitability in both wild-type and knockout mice. The response produced by combined D1 and D2 agonist stimulation was dependent on the sequence of agonist administration. Thus, the D1 agonist-induced decrease in excitability was reversed to a facilitation of spiking upon subsequent D2 agonist administration. In contrast, D2 agonist applied simultaneously with the D1 agonist only produced a reduction in excitability. This type of D1-dependent modulation was not present in slices from the DARPP-32 knockout mice.

Footnotes

  • This work was supported by USPHS MH 01055, MH 292670, MH 57440, MH 45156, DA10044 (to A.A.G.), MH 63498 (to S.-P.O.), and MH 40899 (to P.G. and A.A.F.).

  • Article, publication date, and citation information can be found at http://jpet.aspetjournals.org.

  • DOI: 10.1124/jpet.103.050062.

  • ABBREVIATIONS: DA, dopamine; DARPP-32, dopamine and cAMP-regulated phosphoprotein 32 KDa; (±)-SKF 38393, 2,3,4,5-tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine; DMSO, dimethyl sulfoxide; SCH23390, R-(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine.

    • Received February 5, 2003.
    • Accepted May 29, 2003.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 306 (3)
Journal of Pharmacology and Experimental Therapeutics
Vol. 306, Issue 3
1 Sep 2003
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Dopamine Modulation of Membrane Excitability in Striatal Spiny Neurons is Altered in DARPP-32 Knockout Mice
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleCELLULAR AND MOLECULAR

Dopamine Modulation of Membrane Excitability in Striatal Spiny Neurons is Altered in DARPP-32 Knockout Mice

Shao-Pii Onn, Allen A. Fienberg and Anthony A. Grace
Journal of Pharmacology and Experimental Therapeutics September 1, 2003, 306 (3) 870-879; DOI: https://doi.org/10.1124/jpet.103.050062

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Research ArticleCELLULAR AND MOLECULAR

Dopamine Modulation of Membrane Excitability in Striatal Spiny Neurons is Altered in DARPP-32 Knockout Mice

Shao-Pii Onn, Allen A. Fienberg and Anthony A. Grace
Journal of Pharmacology and Experimental Therapeutics September 1, 2003, 306 (3) 870-879; DOI: https://doi.org/10.1124/jpet.103.050062
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Comparison of piceatannol with resveratrol.
  • New PAS Repeat Sequence for Pharmacokinetic Enhancement
  • CD13 Promotes HCC Cell Chemoresistance
Show more Cellular and Molecular

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics