Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleENDOCRINE AND REPRODUCTIVE

The Role of I1-Imidazoline and α2-Adrenergic Receptors in the Modulation of Glucose Metabolism in the Spontaneously Hypertensive Obese Rat Model of Metabolic Syndrome X

Rodney A. Velliquette and Paul Ernsberger
Journal of Pharmacology and Experimental Therapeutics August 2003, 306 (2) 646-657; DOI: https://doi.org/10.1124/jpet.103.050468
Rodney A. Velliquette
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Paul Ernsberger
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

We examined glucose metabolism after I1-imidazoline (I1R) and α2-adrenergic receptor (α2AR) activation in an animal model of metabolic syndrome X. Fasted spontaneously hypertensive obese rats (SHROB) were given the I1R/α2AR agonists moxonidine and rilmenidine or the α2AR agonist guanabenz. Because of the dual specificity of moxonidine, its actions were split into adrenergic and nonadrenergic components by using selective antagonists: rauwolscine (α2AR) efaroxan (I1R/α2AR), or 2-endo-amino-3-exo-isopropylbicyclo[2.2.1.]heptane (AGN 192403) (I1R). Hyperglycemia induced by moxonidine, rilmenidine, and guanabenz resulted from inhibition of insulin secretion. Similar responses were observed after oral dosing and in lean littermates. Glucagon was reduced by the I1R agonists (moxonidine, 32 ± 5%; rilmenidine, 24 ± 7%) but elevated by guanabenz (71 ± 32%). The hyperglycemic and hypoinsulinemic responses to moxonidine were blocked by rauwolscine. In contrast, rauwolscine potentiated the reduction in glucagon (39 ± 6%). AGN 193402 blocked the glucagon response without affecting hyperglycemia and hypoinsulinemia. Efaroxan blocked all responses to moxonidine. When SHROB rats were treated with moxonidine 15 min before an oral glucose tolerance test, the glucose area under the curve (AUC) was increased. Antagonizing the α2AR component of moxonidine's action with rauwolscine improved glucose AUC 3-fold and facilitated the insulin secretory response and reduced glucagon secretion. Testing fasting glucose and insulin during 3 weeks of oral moxonidine revealed early hyperglycemia that later faded, and a progressive drop in fasting insulin. The acute hyperglycemia and hypoinsulinemia elicited by moxonidine and rilmenidine was mediated by α2AR, whereas I1R may reduce glucagon and increase insulin, particularly after a glucose load.

Footnotes

  • This study was supported by Grant HL44514 from the National Institutes of Health and by a grant from Solvay Pharmaceuticals (Hannover, Germany).

  • DOI: 10.1124/jpet.103.050468.

  • ABBREVIATIONS: α2AR, α2-adrenergic receptor; I1R, I1-imidazoline receptor; SHROB, spontaneously hypertensive obese rat; SHR, spontaneously hypertensive rat; OGTT, oral glucose tolerance test; ANOVA, analysis of variance; REMANOVA, analysis of variance with repeated measures; AUC, area under the curve; AGN 192403, 2-endo-amino-3-exo-isopropylbicyclo[2.2.1.]heptane.

    • Received February 13, 2003.
    • Accepted May 13, 2003.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 306 (2)
Journal of Pharmacology and Experimental Therapeutics
Vol. 306, Issue 2
1 Aug 2003
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
The Role of I1-Imidazoline and α2-Adrenergic Receptors in the Modulation of Glucose Metabolism in the Spontaneously Hypertensive Obese Rat Model of Metabolic Syndrome X
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleENDOCRINE AND REPRODUCTIVE

The Role of I1-Imidazoline and α2-Adrenergic Receptors in the Modulation of Glucose Metabolism in the Spontaneously Hypertensive Obese Rat Model of Metabolic Syndrome X

Rodney A. Velliquette and Paul Ernsberger
Journal of Pharmacology and Experimental Therapeutics August 1, 2003, 306 (2) 646-657; DOI: https://doi.org/10.1124/jpet.103.050468

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleENDOCRINE AND REPRODUCTIVE

The Role of I1-Imidazoline and α2-Adrenergic Receptors in the Modulation of Glucose Metabolism in the Spontaneously Hypertensive Obese Rat Model of Metabolic Syndrome X

Rodney A. Velliquette and Paul Ernsberger
Journal of Pharmacology and Experimental Therapeutics August 1, 2003, 306 (2) 646-657; DOI: https://doi.org/10.1124/jpet.103.050468
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Role of Protein Kinase C-Ras-MAPK p44/42 in Ethanol and Transforming Growth Factor-β3-Induced Basic Fibroblast Growth Factor Release from Folliculostellate Cells
  • Therapeutic Actions of an Insulin Receptor Activator and a Novel Peroxisome Proliferator-Activated Receptor γ Agonist in the Spontaneously Hypertensive Obese Rat Model of Metabolic Syndrome X
  • Hepatic Glucocorticoid Receptor Antagonism Is Sufficient to Reduce Elevated Hepatic Glucose Output and Improve Glucose Control in Animal Models of Type 2 Diabetes
Show more ENDOCRINE AND REPRODUCTIVE

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics