Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleNEUROPHARMACOLOGY

Dendritic Glutamate-Induced Bursting in the Prefrontal Cortex: Further Characterization and Effects of Phencyclidine

Wei-Xing Shi and Xue-Xiang Zhang
Journal of Pharmacology and Experimental Therapeutics May 2003, 305 (2) 680-687; DOI: https://doi.org/10.1124/jpet.102.046359
Wei-Xing Shi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Xue-Xiang Zhang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

To understand the role ofN-methyl-d-aspartate (NMDA) receptors in the prefrontal cortex (PFC) and to investigate how the psychotomimetic drug phencyclidine (PCP) may alter PFC function, we made whole-cell recordings from PFC neurons in rat brain slices. Our result showed that most deep layer pyramidal neurons in the PFC were regular spiking cells. They could fire repetitive bursts, however, when activated by glutamate focally applied to the apical dendrite. Application of NMDA to the same dendritic spot also induced bursting, whereas application of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) evoked single spikes only. Coapplication of AMPA with NMDA evoked more single spikes and decreased NMDA-induced bursting. Experiments with NMDA and AMPA antagonists further showed that dendritic glutamate (dGlu)-induced bursting required NMDA receptor activation and was enhanced when AMPA receptors were blocked. At subanesthetic concentrations, PCP decreased dGlu-induced bursting and altered the temporal characteristics of the bursts by decreasing spikes per burst and increasing interspike intervals within bursts. The latter two changes were not observed when AMPA receptors were blocked, suggesting that they are secondary to the increased AMPA receptor contribution to glutamate responses evoked in the presence of PCP. These results suggest that NMDA receptors are essential for PFC pyramidal cells to fire in bursts in response to dGlu input and that PCP suppresses dGlu-induced bursting. Since bursting is necessary for pyramidal cells to activate GABA interneurons, the suppression effect of PCP may further lead to a weakening of the connections from pyramidal cells and GABA interneurons, thereby contributing to PCP's psychotomimetic effects.

Footnotes

  • This work was supported by U.S. Public Health Service Grants MH52686 and DA12944, and a National Alliance for Research on Schizophrenia and Depression Young Investigator Award to W.-X.S.

  • DOI: 10.1124/jpet.102.046359

  • Abbreviations:
    PFC
    prefrontal cortex
    dGlu
    dendritic glutamate
    NMDA
    N-methyl-d-aspartate
    AMPA
    α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
    PCP
    phencyclidine
    CCD
    charge-coupled device
    NBQX
    2,3-dihydroxy-6-nitro-7-sulfamoylbenzo(f)quinoxaline
    CGP37849
    (E)-(±)-2-amino-4-methyl-5-phosphono-3-pentenoic acid
    TTX
    tetrodotoxin
    ISI
    interspike interval
    • Received October 31, 2002.
    • Accepted January 9, 2003.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 305 (2)
Journal of Pharmacology and Experimental Therapeutics
Vol. 305, Issue 2
1 May 2003
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Dendritic Glutamate-Induced Bursting in the Prefrontal Cortex: Further Characterization and Effects of Phencyclidine
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleNEUROPHARMACOLOGY

Dendritic Glutamate-Induced Bursting in the Prefrontal Cortex: Further Characterization and Effects of Phencyclidine

Wei-Xing Shi and Xue-Xiang Zhang
Journal of Pharmacology and Experimental Therapeutics May 1, 2003, 305 (2) 680-687; DOI: https://doi.org/10.1124/jpet.102.046359

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleNEUROPHARMACOLOGY

Dendritic Glutamate-Induced Bursting in the Prefrontal Cortex: Further Characterization and Effects of Phencyclidine

Wei-Xing Shi and Xue-Xiang Zhang
Journal of Pharmacology and Experimental Therapeutics May 1, 2003, 305 (2) 680-687; DOI: https://doi.org/10.1124/jpet.102.046359
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • D1 agonist vs. methylphenidate on PFC working memory
  • Iclepertin (BI 425809) in schizophrenia-related models
  • Obesity Thwarts Preconditioning in TBI
Show more Neuropharmacology

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics