Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleNEUROPHARMACOLOGY

Piribedil Enhances Frontocortical and Hippocampal Release of Acetylcholine in Freely Moving Rats by Blockade of α2A-Adrenoceptors: A Dialysis Comparison to Talipexole and Quinelorane in the Absence of Acetylcholinesterase Inhibitors

A. Gobert, B. Di Cara, L. Cistarelli and M. J. Millan
Journal of Pharmacology and Experimental Therapeutics April 2003, 305 (1) 338-346; DOI: https://doi.org/10.1124/jpet.102.046383
A. Gobert
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
B. Di Cara
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L. Cistarelli
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M. J. Millan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

In a dialysis procedure not requiring perfusate addition of acetylcholinesterase inhibitors to “boost” basal levels of acetylcholine (ACh), the influence of the antiparkinson agent piribedil upon levels of ACh in frontal cortex and dorsal hippocampus of freely moving rats was compared with those of other antiparkinson drugs and selective ligands at α2-adrenoceptors (ARs). Suggesting a tonic, inhibitory influence of α2A-ARs upon cholinergic transmission, the α2-AR agonist 5-bromo-6-[2-imidazolin-2-yl-amino]-quinoxaline tartrate (UK14,304), and the preferential α2A-AR agonist guanabenz reduced levels of ACh. They were elevated by the antagonists 2(2-methoxy-1,4 benzodioxan-2-yl)-2-imidazoline HCl (RX821002) and atipamezole and by the preferential α2A-AR antagonist 2-(2H-(1-methyl-1,3-dihydroisoindole)methyl)-4,5-dihydroimidazole (BRL44008). In contrast,trans-2,3,9,13b-tetrahydro-1,2-dimethyl-1H-dibenz[c,f]imidazo[1,5-a]azepine (BRL41992) and prazosin, preferential α2B/2C-AR antagonists, were inactive. The dopaminergic agonist and antiparkinson agent piribedil, which behaves as an antagonist at α2-ARs, dose dependently increased extracellular levels of ACh. This action was absent upon pretreatment with a maximally effective dose of RX821002. On the other hand, a further dopaminergic agonist and antiparkinson agent, talipexole, which possesses agonist properties at α2-ARs, dose dependently reduced levels of ACh. This action was also blocked by RX821002. In contrast to piribedil and talipexole, quinelorane, which interacts with dopaminergic receptors but not α2-ARs, failed to affect ACh levels. Finally, in analogy to the frontal cortex, piribedil likewise elicited a dose-dependent increase in extracellular levels of ACh in the dorsal hippocampus. In conclusion, in distinction to talipexole and quinelorane, and reflecting its antagonist properties at α2A-ARs, piribedil reinforces cholinergic transmission in the frontal cortex and dorsal hippocampus of freely moving rats. These actions may be related to its facilitatory influence upon cognitive function.

Footnotes

  • DOI: 10.1124/jpet.102.046383

  • Abbreviations:
    PD
    Parkinson's disease
    DA
    dopamine
    l-DOPA
    l-dihydroxyphenylalanine
    AR
    adrenoceptor
    FCX
    frontal cortex
    AChE
    acetylcholinesterase
    ACh
    acetylcholine
    UK14,304
    5-bromo-6-[2-imidazolin-2-yl-amino]-quinoxaline tartrate
    BRL41992 maleate
    trans-2,3,9,13b-tetrahydro-1,2-dimethyl-1H-dibenz[c,f]imidazo[1,5-a]azepine
    BRL44408 base
    2-(2H-(1-methyl-1,3-dihydroisoindole)methyl)-4,5-dihydroimidazole
    RX821002
    2-(2-methoxy-1,4-benzodioxan-2-yl)-2-imidazoline HCl
    • Received October 31, 2002.
    • Accepted December 30, 2002.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 305 (1)
Journal of Pharmacology and Experimental Therapeutics
Vol. 305, Issue 1
1 Apr 2003
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Piribedil Enhances Frontocortical and Hippocampal Release of Acetylcholine in Freely Moving Rats by Blockade of α2A-Adrenoceptors: A Dialysis Comparison to Talipexole and Quinelorane in the Absence of Acetylcholinesterase Inhibitors
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleNEUROPHARMACOLOGY

Piribedil Enhances Frontocortical and Hippocampal Release of Acetylcholine in Freely Moving Rats by Blockade of α2A-Adrenoceptors: A Dialysis Comparison to Talipexole and Quinelorane in the Absence of Acetylcholinesterase Inhibitors

A. Gobert, B. Di Cara, L. Cistarelli and M. J. Millan
Journal of Pharmacology and Experimental Therapeutics April 1, 2003, 305 (1) 338-346; DOI: https://doi.org/10.1124/jpet.102.046383

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleNEUROPHARMACOLOGY

Piribedil Enhances Frontocortical and Hippocampal Release of Acetylcholine in Freely Moving Rats by Blockade of α2A-Adrenoceptors: A Dialysis Comparison to Talipexole and Quinelorane in the Absence of Acetylcholinesterase Inhibitors

A. Gobert, B. Di Cara, L. Cistarelli and M. J. Millan
Journal of Pharmacology and Experimental Therapeutics April 1, 2003, 305 (1) 338-346; DOI: https://doi.org/10.1124/jpet.102.046383
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Iclepertin (BI 425809) in schizophrenia-related models
  • D1 agonist vs. methylphenidate on PFC working memory
  • Obesity Thwarts Preconditioning in TBI
Show more Neuropharmacology

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics