Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleABSORPTION, DISTRIBUTION, METABOLISM, AND EXCRETION

Distribution of STI-571 to the Brain Is Limited by P-Glycoprotein-Mediated Efflux

HaiQing Dai, Peter Marbach, Michel Lemaire, Michael Hayes and William F. Elmquist
Journal of Pharmacology and Experimental Therapeutics March 2003, 304 (3) 1085-1092; DOI: https://doi.org/10.1124/jpet.102.045260
HaiQing Dai
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Peter Marbach
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Michel Lemaire
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Michael Hayes
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
William F. Elmquist
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The adequate distribution of STI-571 (Gleevec) to the central nervous system (CNS) is critical for its effective use in CNS tumors. P-glycoprotein-mediated efflux in the blood-brain barrier may play a role in the CNS delivery of this drug. Whether STI-571 is a substrate of P-glycoprotein was determined by examining the directional flux of [14C]STI-571 in parental and MDR1-transfected Madin-Darby canine kidney (MDCK) II epithelial cell monolayers. The basolateral-to-apical flux of STI-571 was 39-fold greater than the apical-to-basolateral flux in the MDR1-transfected cells and 8-fold greater in the parental cell monolayers. This difference in directional flux was significantly reduced by a specific P-glycoprotein inhibitor (2R)-anti-5-{3-[4-(10,11-difluoromethanodibenzo-suber-5-yl)piperazin-1-yl]-2-hydroxypropoxy}quinoline trihydrochloride (LY335979). The role of P-glycoprotein in the CNS distribution of STI-571 was examined in vivo, using wild-type and mdr1a/b (−/−) knockout mice that were orally administered 25 mg/kg [14C]STI-571. In the wild-type mice, the brain-to-plasma STI-571 concentration ratio at all time points was low (1–3%); however, there was an 11-fold greater brain partitioning of STI-571 at 1 h postdose in the mdr1a/b (−/−) mice compared with the wild-type mice. When 12.5 mg/kg STI-571 was given intravenously, the brain-to-plasma ratio of STI-571 in the mdr1a/b (−/−) mice was approximately 7-fold greater than that of wild-type mice up to 120 min postdose. These data indicate that STI-571 is a substrate of P-glycoprotein, and that the inhibition of P-glycoprotein affects the transport of STI-571 across MDCKII monolayers. Moreover, P-glycoprotein plays an important role in limiting the distribution of STI-571 to the CNS.

Footnotes

  • This project was partially supported by National Institutes of Health Grant CA75466, a grant from Novartis Pharma, and by a fellowship (to H.D.) from the graduate school of University of Nebraska Medical Center.

  • DOI: 10.1124/jpet.102.045260

  • Abbreviations:
    PDGFR
    platelet-derived growth factor receptor
    CML
    chronic myelogenous leukemia
    CNS
    central nervous system
    MDR1
    multidrug resistance-1 gene
    MDCK
    Madin-Darby canine kidney
    A-to-B
    apical-to-basal
    B-to-A
    basal-to-apical
    HPLC
    high-performance liquid chromatography
    LC-MS
    liquid chromatography-mass spectrometry
    • Received October 7, 2002.
    • Accepted November 25, 2002.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 304 (3)
Journal of Pharmacology and Experimental Therapeutics
Vol. 304, Issue 3
1 Mar 2003
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Distribution of STI-571 to the Brain Is Limited by P-Glycoprotein-Mediated Efflux
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleABSORPTION, DISTRIBUTION, METABOLISM, AND EXCRETION

Distribution of STI-571 to the Brain Is Limited by P-Glycoprotein-Mediated Efflux

HaiQing Dai, Peter Marbach, Michel Lemaire, Michael Hayes and William F. Elmquist
Journal of Pharmacology and Experimental Therapeutics March 1, 2003, 304 (3) 1085-1092; DOI: https://doi.org/10.1124/jpet.102.045260

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleABSORPTION, DISTRIBUTION, METABOLISM, AND EXCRETION

Distribution of STI-571 to the Brain Is Limited by P-Glycoprotein-Mediated Efflux

HaiQing Dai, Peter Marbach, Michel Lemaire, Michael Hayes and William F. Elmquist
Journal of Pharmacology and Experimental Therapeutics March 1, 2003, 304 (3) 1085-1092; DOI: https://doi.org/10.1124/jpet.102.045260
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Transport Is Not Rate-Limiting in Morphine Glucuronidation in the Single-Pass Perfused Rat Liver Preparation
  • Enhanced Hepatic Uptake and Bioactivity of Type α1(I) Collagen Gene Promoter-Specific Triplex-Forming Oligonucleotides after Conjugation with Cholesterol
  • Characterization of P-glycoprotein Inhibition by Major Cannabinoids from Marijuana
Show more ABSORPTION, DISTRIBUTION, METABOLISM, AND EXCRETION

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics