Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleNEUROPHARMACOLOGY

3-[2-[4-(3-Chloro-2-methylphenyl)-1-piperazinyl]ethyl]-5,6-dimethoxy-1-(4-imidazolylmethyl)-1H-indazole Dihydrochloride 3.5 Hydrate (DY-9760e), a Novel Calmodulin Antagonist, Reduces Brain Edema through the Inhibition of Enhanced Blood-Brain Barrier Permeability after Transient Focal Ischemia

Toshiyuki Sato, Yoshiyuki Morishima and Yasufumi Shirasaki
Journal of Pharmacology and Experimental Therapeutics March 2003, 304 (3) 1042-1047; DOI: https://doi.org/10.1124/jpet.102.045039
Toshiyuki Sato
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yoshiyuki Morishima
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yasufumi Shirasaki
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

An alteration of the blood-brain barrier (BBB) permeability contributes to the development of brain edema after stroke. In this study, we evaluated the effects of 3-[2-[4-(3-chloro-2-methylphenyl)-1-piperazinyl]ethyl]-5,6-dimethoxy-1-(4-imidazolylmethyl)-1H-indazole dihydrochloride 3.5 hydrate (DY-9760e), a novel calmodulin antagonist, on brain edema formation and BBB integrity in rats subjected to transient focal ischemia. DY-9760e (1 mg/kg/h) was intravenously infused for 6 h, starting immediately after reperfusion of a 1-h middle cerebral artery occlusion. Treatment with DY-9760e significantly suppressed the increase in water content and the extravasation of Evans blue dye after transient focal ischemia. Analysis of a magnetic resonance imaging method revealed that DY-9760e significantly prevented the development of brain edema in the cortical region of the ipsilateral hemisphere. Trifluoperazine, a calmodulin antagonist that is structurally different from DY-9760e, also attenuated brain edema elicited by transient focal ischemia. Furthermore, DY-9760e and trifluoperazine reduced tumor necrosis factor-α-induced hyperpermeability of inulin through a cultured brain microvascular endothelial cell monolayer, suggesting an involvement of calmodulin in the regulation of brain microvascular barrier function. The present results demonstrate that DY-9760e ameliorates brain edema formation and suggest that this effect may be mediated in part by the inhibition of enhanced BBB permeability after ischemic insults. Thus, DY-9760e is expected to be a therapeutic drug for treatment of acute stroke patients.

Footnotes

  • DOI: 10.1124/jpet.102.045039

  • Abbreviations:
    BBB
    blood-brain barrier
    TNFα
    tumor necrosis factor-α
    MCA
    middle cerebral artery
    MRI
    magnetic resonance imaging
    HBMEC
    human brain microvascular endothelial cell
    ANOVA
    analysis of variance
    PLSD
    protected least significant difference
    NOS
    nitric-oxide synthase
    A23187
    5-(methylamino)-2-[(2R,3R,6S,8S,9R,11R)-3,9,11-trimethyl-8-[(1S)-1-methyl-2-oxo-2-(1H)-pyrrol-2-yl)-ethyl]-1,7-dioxaspiro[5,5] undec-2-yl]methyl]-4-benzoxazolecarboxylic acid
    • Received October 2, 2002.
    • Accepted November 20, 2002.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 304 (3)
Journal of Pharmacology and Experimental Therapeutics
Vol. 304, Issue 3
1 Mar 2003
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
3-[2-[4-(3-Chloro-2-methylphenyl)-1-piperazinyl]ethyl]-5,6-dimethoxy-1-(4-imidazolylmethyl)-1H-indazole Dihydrochloride 3.5 Hydrate (DY-9760e), a Novel Calmodulin Antagonist, Reduces Brain Edema through the Inhibition of Enhanced Blood-Brain Barrier Perm…
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleNEUROPHARMACOLOGY

3-[2-[4-(3-Chloro-2-methylphenyl)-1-piperazinyl]ethyl]-5,6-dimethoxy-1-(4-imidazolylmethyl)-1H-indazole Dihydrochloride 3.5 Hydrate (DY-9760e), a Novel Calmodulin Antagonist, Reduces Brain Edema through the Inhibition of Enhanced Blood-Brain Barrier Permeability after Transient Focal Ischemia

Toshiyuki Sato, Yoshiyuki Morishima and Yasufumi Shirasaki
Journal of Pharmacology and Experimental Therapeutics March 1, 2003, 304 (3) 1042-1047; DOI: https://doi.org/10.1124/jpet.102.045039

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Research ArticleNEUROPHARMACOLOGY

3-[2-[4-(3-Chloro-2-methylphenyl)-1-piperazinyl]ethyl]-5,6-dimethoxy-1-(4-imidazolylmethyl)-1H-indazole Dihydrochloride 3.5 Hydrate (DY-9760e), a Novel Calmodulin Antagonist, Reduces Brain Edema through the Inhibition of Enhanced Blood-Brain Barrier Permeability after Transient Focal Ischemia

Toshiyuki Sato, Yoshiyuki Morishima and Yasufumi Shirasaki
Journal of Pharmacology and Experimental Therapeutics March 1, 2003, 304 (3) 1042-1047; DOI: https://doi.org/10.1124/jpet.102.045039
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • CVN424, a novel GPR6 inverse agonist for Parkinson's disease
  • Methylone Brain Concentrations and Pharmacodynamic Effects
  • Oxysterols and Ethanol
Show more Neuropharmacology

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics