Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleCELLULAR AND MOLECULAR

Effects of Halothane and Propofol on Excitatory and Inhibitory Synaptic Transmission in Rat Cortical Neurons

Akira Kitamura, William Marszalec, Jay Z. Yeh and Toshio Narahashi
Journal of Pharmacology and Experimental Therapeutics January 2003, 304 (1) 162-171; DOI: https://doi.org/10.1124/jpet.102.043273
Akira Kitamura
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
William Marszalec
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jay Z. Yeh
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Toshio Narahashi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

General anesthetics are thought to act on both excitatory and inhibitory neuronal pathways at both post- and presynaptic sites. However, the literature in these regards is somewhat controversial. The aim of the present study was to reassess the relative importance of the various anesthetic actions using a common preparation. Rat cortical neurons in primary culture were used to record spontaneous miniature postsynaptic currents by the whole-cell patch-clamp technique. Halothane at clinically relevant concentrations prolonged the decay phase of spontaneous miniature inhibitory postsynaptic currents (mIPSCs) recorded in the presence of tetrodotoxin and at higher concentrations decreased the frequency of mIPSCs. The mIPSC amplitudes underwent little change. Spontaneous action potential-dependent IPSCs recorded in the absence of tetrodotoxin were similarly affected by halothane. Halothane also decreased the frequency of spontaneous miniature non-N-methyl-d-aspartate (NMDA) excitatory postsynaptic currents (mEPSCs) as well as spontaneous action potential-dependent NMDA EPSCs and non-NMDA EPSCs without affecting their decay phase. The halothane effect on mIPSC and mEPSC frequency was dependent on the external calcium concentration. In contrast to halothane, the only effect of propofol was the prolongation of the decay phase of mIPSCs and IPSCs. The prolongation of mIPSCs and IPSCs by halothane and propofol coupled with the ineffectiveness on mEPSCs and EPSCs suggests a selective postsynaptic modulation of GABAA receptors. The additional calcium-dependent inhibition of mIPSC and mEPSC frequency by halothane (but not propofol) suggests a more general mechanism by this anesthetic on presynaptic transmitter release.

Footnotes

  • This study was supported by a grant from the National Institutes of Health AA07836.

  • DOI: 10.1124/jpet.102.043273

  • Abbreviations:
    EPSP
    excitatory postsynaptic potential
    EPSC
    excitatory postsynaptic current
    NMDA
    N-methyl-d-aspartate
    AMPA
    α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid
    IPSC
    inhibitory postsynaptic current
    TTX
    tetrodotoxin
    mIPSC
    miniature inhibitory postsynaptic current
    mEPSC
    miniature excitatory postsynaptic current
    CNQX
    6-cyano-7-nitroquinoxaline
    APV
    2-amino-5-phosphonovaleric acid
    nACh
    nicotinic acetylcholine
    MAC
    minimum alveolar concentration
    • Received August 20, 2002.
    • Accepted September 17, 2002.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 304 (1)
Journal of Pharmacology and Experimental Therapeutics
Vol. 304, Issue 1
1 Jan 2003
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Effects of Halothane and Propofol on Excitatory and Inhibitory Synaptic Transmission in Rat Cortical Neurons
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleCELLULAR AND MOLECULAR

Effects of Halothane and Propofol on Excitatory and Inhibitory Synaptic Transmission in Rat Cortical Neurons

Akira Kitamura, William Marszalec, Jay Z. Yeh and Toshio Narahashi
Journal of Pharmacology and Experimental Therapeutics January 1, 2003, 304 (1) 162-171; DOI: https://doi.org/10.1124/jpet.102.043273

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleCELLULAR AND MOLECULAR

Effects of Halothane and Propofol on Excitatory and Inhibitory Synaptic Transmission in Rat Cortical Neurons

Akira Kitamura, William Marszalec, Jay Z. Yeh and Toshio Narahashi
Journal of Pharmacology and Experimental Therapeutics January 1, 2003, 304 (1) 162-171; DOI: https://doi.org/10.1124/jpet.102.043273
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Anisodamine Ameliorates Acute Lung Injury
  • ACE2 Inhibits LPS-Caused Lung Fibrosis
  • ML355 Effects on Platelets
Show more Cellular and Molecular

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics