Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleABSORPTION, DISTRIBUTION, METABOLISM, AND EXCRETION

The Cation Transporters rOCT1 and rOCT2 Interact with Bicarbonate but Play Only a Minor Role for Amantadine Uptake into Rat Renal Proximal Tubules

Kerry B. Goralski, Ganlu Lou, Matthew T. Prowse, Valentin Gorboulev, Christopher Volk, Hermann Koepsell and Daniel S. Sitar
Journal of Pharmacology and Experimental Therapeutics December 2002, 303 (3) 959-968; DOI: https://doi.org/10.1124/jpet.102.038885
Kerry B. Goralski
1 2 3 4 5
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ganlu Lou
1 2 3 4 5
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Matthew T. Prowse
1 2 3 4 5
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Valentin Gorboulev
1 2 3 4 5
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Christopher Volk
1 2 3 4 5
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hermann Koepsell
1 2 3 4 5
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Daniel S. Sitar
1 2 3 4 5
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

In renal proximal tubules, the organic cation transporters rOCT1 and rOCT2 are supposed to mediate the first step in organic cation secretion. We investigated whether previously described differences in amantadine and tetraethylammonium (TEA) uptake into isolated renal proximal tubules could be explained by differences in their transport by rOCT1 and rOCT2. By expressing rOCT1 and rOCT2 inXenopus oocytes and HEK 293 cells, we demonstrated that both transporters translocated amantadine. In Xenopusoocytes, the inhibitory potency of several rOCT1/2 inhibitors was similar for amantadine compared to TEA uptake and supports amantadine transport by rOCT1 and rOCT2. In proximal tubules, procainamide, quinine, cyanine863, choline, and guanidine in concentrations that inhibit rOCT1/2-mediated TEA or amantadine uptake in Xenopus oocytes exhibited no effect on amantadine uptake. At variance, these inhibitors blocked TEA uptake into proximal tubules. Amantadine and TEA transport were sensitive to modulation by 25 mM bicarbonate. The effect of bicarbonate on organic cation transport was dependent on substrate (amantadine or TEA), cell system (oocytes, HEK 293 cells, or proximal tubules), and transporter (rOCT1 or rOCT2). In proximal tubules, only amantadine uptake was stimulated by bicarbonate. The data suggested that rat renal proximal tubules contain an organic cation transporter in addition to rOCT1 and rOCT2 that mediates amantadine uptake and requires bicarbonate for optimal function. TEA uptake by the basolateral membrane may be mediated mainly by rOCT1 and rOCT2, but these transporters may be in a different functional or regulatory state when expressed in cells or oocytes compared with expression in vivo.

  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 303 (3)
Journal of Pharmacology and Experimental Therapeutics
Vol. 303, Issue 3
1 Dec 2002
  • Table of Contents
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
The Cation Transporters rOCT1 and rOCT2 Interact with Bicarbonate but Play Only a Minor Role for Amantadine Uptake into Rat Renal Proximal Tubules
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleABSORPTION, DISTRIBUTION, METABOLISM, AND EXCRETION

The Cation Transporters rOCT1 and rOCT2 Interact with Bicarbonate but Play Only a Minor Role for Amantadine Uptake into Rat Renal Proximal Tubules

Kerry B. Goralski, Ganlu Lou, Matthew T. Prowse, Valentin Gorboulev, Christopher Volk, Hermann Koepsell and Daniel S. Sitar
Journal of Pharmacology and Experimental Therapeutics December 1, 2002, 303 (3) 959-968; DOI: https://doi.org/10.1124/jpet.102.038885

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleABSORPTION, DISTRIBUTION, METABOLISM, AND EXCRETION

The Cation Transporters rOCT1 and rOCT2 Interact with Bicarbonate but Play Only a Minor Role for Amantadine Uptake into Rat Renal Proximal Tubules

Kerry B. Goralski, Ganlu Lou, Matthew T. Prowse, Valentin Gorboulev, Christopher Volk, Hermann Koepsell and Daniel S. Sitar
Journal of Pharmacology and Experimental Therapeutics December 1, 2002, 303 (3) 959-968; DOI: https://doi.org/10.1124/jpet.102.038885
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Transport Is Not Rate-Limiting in Morphine Glucuronidation in the Single-Pass Perfused Rat Liver Preparation
  • Enhanced Hepatic Uptake and Bioactivity of Type α1(I) Collagen Gene Promoter-Specific Triplex-Forming Oligonucleotides after Conjugation with Cholesterol
  • Characterization of P-glycoprotein Inhibition by Major Cannabinoids from Marijuana
Show more ABSORPTION, DISTRIBUTION, METABOLISM, AND EXCRETION

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics