Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleNEUROPHARMACOLOGY

Ocular Hypotensive Action of Topical Flunarizine in the Rabbit: Role of ς1 Recognition Sites

Gabriele Campana, Claudio Bucolo, Giovanna Murari and Santi Spampinato
Journal of Pharmacology and Experimental Therapeutics December 2002, 303 (3) 1086-1094; DOI: https://doi.org/10.1124/jpet.102.040584
Gabriele Campana
Department of Pharmacology, University of Bologna, Bologna, Italy
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Claudio Bucolo
Department of Pharmacology, University of Bologna, Bologna, Italy
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Giovanna Murari
Department of Pharmacology, University of Bologna, Bologna, Italy
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Santi Spampinato
Department of Pharmacology, University of Bologna, Bologna, Italy
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

In a previous study we ascertained the presence of ς1 and ς2 recognition sites in the rabbit iris-ciliary body, an ocular structure involved in aqueous humor production and drainage. We characterized the ς1 sites using the preferential ligand (+)-pentazocine, which caused a significant reduction of intraocular pressure (IOP). In the present study, flunarizine, a calcium channel blocker with a complex pharmacological profile, bound to ς1 sites expressed in the iris-ciliary body with moderate affinity (K i = 68 nM). Unilateral topical flunarizine (0.01–0.1%) caused a dose-related reduction of IOP in ocular normotensive rabbits and in the α-chymotrypsin model of ocular hypertension, without altering the IOP of the contralateral eye. This activity was blocked by the ς1 site antagonist NE-100 [N,N-dipropyl-2-[4-methoxy-3-(2-phenylethoxy)phenyl]ethylamine HCl] which, by itself, had no effect on IOP. Detection of flunarizine in rabbit iris-ciliary body homogenates, after topical instillation, showed that it adequately penetrates the rabbit eye. To investigate mechanisms that may contribute to ocular hypotension induced by ς1 agonists, we carried out in vitro studies on the isolated rabbit iris-ciliary body. Flunarizine (IC50 = 5. 96 nM) and (+)-pentazocine (IC50 = 3. 81 nM) inhibited [3H]norepinephrine release. Moreover, flunarizine (IC50 = 6.34 nM) and (+)-pentazocine (IC50 = 27.26 nM) also antagonized isoproterenol-induced cAMP accumulation. The action of flunarizine and (+)-pentazocine was sensitive to NE-100 antagonism; however, this latter compound partially prevented their effect on [3H]norepinephrine and cAMP accumulation. These findings indicate that flunarizine and (+)-pentazocine interact with ocular ς1 sites and may prove effective in the control of ocular hypertension.

  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 303 (3)
Journal of Pharmacology and Experimental Therapeutics
Vol. 303, Issue 3
1 Dec 2002
  • Table of Contents
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Ocular Hypotensive Action of Topical Flunarizine in the Rabbit: Role of ς1 Recognition Sites
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleNEUROPHARMACOLOGY

Ocular Hypotensive Action of Topical Flunarizine in the Rabbit: Role of ς1 Recognition Sites

Gabriele Campana, Claudio Bucolo, Giovanna Murari and Santi Spampinato
Journal of Pharmacology and Experimental Therapeutics December 1, 2002, 303 (3) 1086-1094; DOI: https://doi.org/10.1124/jpet.102.040584

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Research ArticleNEUROPHARMACOLOGY

Ocular Hypotensive Action of Topical Flunarizine in the Rabbit: Role of ς1 Recognition Sites

Gabriele Campana, Claudio Bucolo, Giovanna Murari and Santi Spampinato
Journal of Pharmacology and Experimental Therapeutics December 1, 2002, 303 (3) 1086-1094; DOI: https://doi.org/10.1124/jpet.102.040584
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • CVN424, a novel GPR6 inverse agonist for Parkinson's disease
  • Methylone Brain Concentrations and Pharmacodynamic Effects
  • Oxysterols and Ethanol
Show more Neuropharmacology

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics