Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleCARDIOVASCULAR

1-[4-[4[(4R,5R)-3,3-Dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-4-hydroxy-1,1-dioxido-1-benzothiepin-5-yl]phenoxy]butyl]-4-aza-1-azoniabicyclo[2.2.2]octane Methanesulfonate (SC-435), an Ileal Apical Sodium-Codependent Bile Acid Transporter Inhibitor Alters Hepatic Cholesterol Metabolism and Lowers Plasma Low-Density Lipoprotein-Cholesterol Concentrations in Guinea Pigs

Kristy L. West, Tripurasundari Ramjiganesh, Suheeta Roy, Bradley T. Keller and Maria Luz Fernandez
Journal of Pharmacology and Experimental Therapeutics October 2002, 303 (1) 293-299; DOI: https://doi.org/10.1124/jpet.102.038711
Kristy L. West
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Tripurasundari Ramjiganesh
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Suheeta Roy
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Bradley T. Keller
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Maria Luz Fernandez
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Male Hartley guinea pigs (10/group) were assigned either to a control diet (no drug treatment) or to diets containing 0.4, 2.2, or 7.3 mg/day of an ileal apical sodium-codependent bile acid transporter (ASBT) inhibitor, 1-[4-[4[(4R,5R)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-4-hydroxy-1,1-dioxido-1-benzothiepin-5-yl]phenoxy]butyl]-4-aza-1-azoniabicyclo[2.2.2] octane methanesulfonate (SC-435). Based on food consumption, guinea pigs received 0, 0.8, 3.7, or 13.4 mg/kg/day of the ASBT inhibitor. The amount of cholesterol in the four diets was maintained at 0.17%, equivalent to 1200 mg/day in the human situation. Guinea pigs treated with 13.4 mg/kg/day SC-435 had 41% lower total cholesterol and 44% lower low-density lipoprotein (LDL)-cholesterol concentrations compared with control (P < 0.01), whereas no significant differences were observed with either of the lower doses of SC-435. Hepatic cholesterol esters were significantly reduced by 43, 56, and 70% in guinea pigs fed 0.8, 3.7, and 13.4 mg/kg/day of the ASBT inhibitor, respectively (P < 0.01). In addition, the highest dose of the inhibitor resulted in a 42% increase in the number of very low-density lipoprotein (VLDL) triacylglycerol molecules and a larger VLDL diameter compared with controls (P < 0.05). Acyl-CoA cholesterol/acyltransferase activity was 30% lower with the highest dose treatment, whereas cholesterol 7α-hydroxylase, the regulatory enzyme of bile acid synthesis, was 30% higher with the highest ASBT inhibitor dose (P < 0.05). Furthermore, bile acid excretion increased 2-fold with the highest dose of SC-435 compared with the control group (P < 0.05). These results suggest that the reduction in total and LDL-cholesterol concentrations by the ASBT inhibitor is a result of alterations in hepatic cholesterol metabolism due to modifications in the enterohepatic circulation of bile acids.

Footnotes

  • DOI: 10.1124/jpet.102.038711

  • Abbreviations:
    ASBT
    apical sodium codependent bile acid transporter
    TG
    triglyceride
    LDL
    low-density lipoprotein
    HDL
    high-density lipoprotein
    apoB
    apolipoprotein-B
    ACAT
    acyl-CoA cholesteryl/acyltransferase
    CYP7
    cholesterol 7α-hydroxylase
    VLDL
    very low-density lipoprotein
    HMG-CoA-R
    3-hydroxy-3-methylglutaryl-coenzyme A reductase
    FXR
    farnesoid X receptor
    LDL-C
    low-density lipoprotein-cholesterol
    • Received May 14, 2002.
    • Accepted June 11, 2002.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 303 (1)
Journal of Pharmacology and Experimental Therapeutics
Vol. 303, Issue 1
1 Oct 2002
  • Table of Contents
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
1-[4-[4[(4R,5R)-3,3-Dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-4-hydroxy-1,1-dioxido-1-benzothiepin-5-yl]phenoxy]butyl]-4-aza-1-azoniabicyclo[2.2.2]octane Methanesulfonate (SC-435), an Ileal Apical Sodium-Codependent Bile Acid Transporter Inhibitor Alt…
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleCARDIOVASCULAR

1-[4-[4[(4R,5R)-3,3-Dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-4-hydroxy-1,1-dioxido-1-benzothiepin-5-yl]phenoxy]butyl]-4-aza-1-azoniabicyclo[2.2.2]octane Methanesulfonate (SC-435), an Ileal Apical Sodium-Codependent Bile Acid Transporter Inhibitor Alters Hepatic Cholesterol Metabolism and Lowers Plasma Low-Density Lipoprotein-Cholesterol Concentrations in Guinea Pigs

Kristy L. West, Tripurasundari Ramjiganesh, Suheeta Roy, Bradley T. Keller and Maria Luz Fernandez
Journal of Pharmacology and Experimental Therapeutics October 1, 2002, 303 (1) 293-299; DOI: https://doi.org/10.1124/jpet.102.038711

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleCARDIOVASCULAR

1-[4-[4[(4R,5R)-3,3-Dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-4-hydroxy-1,1-dioxido-1-benzothiepin-5-yl]phenoxy]butyl]-4-aza-1-azoniabicyclo[2.2.2]octane Methanesulfonate (SC-435), an Ileal Apical Sodium-Codependent Bile Acid Transporter Inhibitor Alters Hepatic Cholesterol Metabolism and Lowers Plasma Low-Density Lipoprotein-Cholesterol Concentrations in Guinea Pigs

Kristy L. West, Tripurasundari Ramjiganesh, Suheeta Roy, Bradley T. Keller and Maria Luz Fernandez
Journal of Pharmacology and Experimental Therapeutics October 1, 2002, 303 (1) 293-299; DOI: https://doi.org/10.1124/jpet.102.038711
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Optimized S-nitrosohemoglobin synthesis in red blood cells
  • High-Salt Diet Upregulates CaSR Expression and Signaling
  • L-Arginine improves post-infarction physical function
Show more Cardiovascular

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics