Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleCELLULAR AND MOLECULAR

Rapid Desensitization of the Serotonin2C Receptor System: Effector Pathway and Agonist Dependence

Brian D. Stout, William P. Clarke and Kelly A. Berg
Journal of Pharmacology and Experimental Therapeutics September 2002, 302 (3) 957-962; DOI: https://doi.org/10.1124/jpet.302.3.957
Brian D. Stout
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
William P. Clarke
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kelly A. Berg
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The serotonin2C (5-HT2C) receptor couples to multiple effector mechanisms, including phospholipase A2-mediated arachidonic acid (AA) release and phospholipase C-mediated production of inositol phosphates (IP). Agonist relative efficacy differs depending upon which response (AA release or IP accumulation) is measured. In this study, we investigated the characteristics and agonist dependence of rapid desensitization of 5-HT2C receptor-mediated AA release and IP accumulation measured simultaneously from the same cell population. Pretreatment with 5-HT reduced the ability of a maximal concentration of 5-HT to elicit AA release and IP accumulation by about 60%; however, the AA response desensitized more rapidly (t1/2 = 1.3 min) than the IP response (t1/2 = 6.9 min). In addition, desensitization of the IP response was more sensitive (occurred at lower receptor occupancy levels) than the AA response. Moreover, in response to submaximal 5-HT concentrations, after an initial transient desensitization, the AA response was enhanced by up to ∼250%. After maximal desensitization, both responses recovered, but recovery of the AA response was complete and faster than that for IP. Desensitization of both responses was also agonist-dependent, and the capacity of agonists to elicit desensitization was not related to their efficacy to activate signaling. These data suggest that desensitization of the 5-HT2C receptor system is both agonist- and effector pathway-dependent and underscore the need to study multiple cellular responses to multiple agonists to understand receptor-mediated signaling systems.

Footnotes

  • This work was supported by U.S. Public Health Service Grants DA 09094 (to K.A.B.) and GM 58652 and the Texas Advanced Research Program (3569-0044; to W.P.C. and K.A.B.).

  • Abbreviations:
    5-HT
    serotonin
    7-TMS
    seven transmembrane spanning
    PLC
    phospholipase C
    PI
    phosphatidylinositol
    PLA2
    phospholipase A2
    AA
    arachidonic acid
    IP
    inositol phosphates
    CHO
    Chinese hamster ovary
    LSD
    lysergic acid diethylamide
    mCPP
    1-(3-chlorophenyl)piperazine
    TFMPP
    3-trifluotomethylphenyl-piperazine
    • Received February 5, 2002.
    • Accepted March 25, 2002.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 302 (3)
Journal of Pharmacology and Experimental Therapeutics
Vol. 302, Issue 3
1 Sep 2002
  • Table of Contents
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Rapid Desensitization of the Serotonin2C Receptor System: Effector Pathway and Agonist Dependence
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleCELLULAR AND MOLECULAR

Rapid Desensitization of the Serotonin2C Receptor System: Effector Pathway and Agonist Dependence

Brian D. Stout, William P. Clarke and Kelly A. Berg
Journal of Pharmacology and Experimental Therapeutics September 1, 2002, 302 (3) 957-962; DOI: https://doi.org/10.1124/jpet.302.3.957

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleCELLULAR AND MOLECULAR

Rapid Desensitization of the Serotonin2C Receptor System: Effector Pathway and Agonist Dependence

Brian D. Stout, William P. Clarke and Kelly A. Berg
Journal of Pharmacology and Experimental Therapeutics September 1, 2002, 302 (3) 957-962; DOI: https://doi.org/10.1124/jpet.302.3.957
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Chlorogenic Acid Inhibits Breast Cancer Metastasis
  • SNAP25 and mGluRs Control Pathological Tau Release
  • N-Stearoylethanolamine Inhibits Platelet Reactivity
Show more Cellular and Molecular

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics