Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleCARDIOVASCULAR

Renal Cytochrome P450 Oxygenases and Preglomerular Vascular Response to Arachidonic Acid and Endothelin-1 Following Ischemia/Reperfusion

Hantz Hercule and Adebayo Oyekan
Journal of Pharmacology and Experimental Therapeutics August 2002, 302 (2) 717-724; DOI: https://doi.org/10.1124/jpet.302.2.717
Hantz Hercule
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Adebayo Oyekan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

This study tested the hypothesis that cytochrome P450 (P450) metabolites of arachidonic acid (AA) contribute to the vascular changes in ischemia/reperfusion (I/R) injury in the rat. In this study, P450-dependent ω-hydroxylase-mediated vascular reactivity of the rat renal interlobular and arcuate vessels [preglomerular vessels (PGMV)] was measured in left kidneys subjected to I/R. Clipping the left renal artery and vein for 30 min followed by reperfusion (I/R) for 3, 6, and 24 h markedly reduced renal microsomal ω-hydroxylase-mediated conversion of [14C]AA to 20-hydroxyeicosatetraenoic acid (HETE) that amounted to 34, 37, and 58% of the control enzyme activity, respectively. CYP4A protein expression was also reduced. There was no significant change in epoxygenase activity. Despite these changes, constriction of the rat PGMV by AA or endothelin-1 (ET-1) was not different in vessels from the clipped and nonclipped (contralateral) kidney. Clofibrate (250 mg/kg i.p.), an inducer of CYP4A protein and ω-hydroxylase enzymes, did not increase 20-HETE production but selectively enhanced the vasoconstriction produced by AA and ET-1 in the clipped but not the contralateral kidney without affecting the constriction produced by 9,11-dideoxy-9α,11α-methanoepoxy prostaglandin F2α. On the other hand, administration of 2% NaCl (w/v, orally for 7 days) to induce P450-dependent epoxygenase activity attenuated AA-induced vasoconstriction but enhanced ET-1-induced vasoconstriction only in the clipped kidney. These data indicate that the reduction in CYP4A protein expression and enzyme activity in I/R is an adaptive mechanism to preserve renal vasculature from excessive vasoconstriction. Moreover, the increase in epoxygenase activity following salt loading may account for the diminished vasoconstriction evoked by AA. However, the enhancing effect of salt on ET-1-induced vasoconstriction in I/R appears to result from an overwhelming effect of salt-induced sensitization of the renal vasculature to ET-1 over the enhanced production of dilator epoxygenase products.

Footnotes

  • This study was supported by the National Institutes of Health Grants HL59884 and UH1 HL03674. Dr. Oyekan is a recipient of the American Heart Association Established Investigator Award 0040119N.

  • Abbreviations:
    ARF
    acute renal failure
    AA
    arachidonic acid
    P450
    cytochrome P450
    HETE
    hydroxyeicosatetraenoic acid
    PGMV
    preglomerular vessel
    ID
    intraluminal diameter
    I/R
    ischemia/reperfusion
    U46619
    9,11-dideoxy-9α,11α-methanoepoxy prostaglandin F2α
    NO
    nitric oxide
    HPLC
    high-performance liquid chromatography
    ET
    endothelin
    • Received November 27, 2001.
    • Accepted April 4, 2002.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 302 (2)
Journal of Pharmacology and Experimental Therapeutics
Vol. 302, Issue 2
1 Aug 2002
  • Table of Contents
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Renal Cytochrome P450 Oxygenases and Preglomerular Vascular Response to Arachidonic Acid and Endothelin-1 Following Ischemia/Reperfusion
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleCARDIOVASCULAR

Renal Cytochrome P450 Oxygenases and Preglomerular Vascular Response to Arachidonic Acid and Endothelin-1 Following Ischemia/Reperfusion

Hantz Hercule and Adebayo Oyekan
Journal of Pharmacology and Experimental Therapeutics August 1, 2002, 302 (2) 717-724; DOI: https://doi.org/10.1124/jpet.302.2.717

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleCARDIOVASCULAR

Renal Cytochrome P450 Oxygenases and Preglomerular Vascular Response to Arachidonic Acid and Endothelin-1 Following Ischemia/Reperfusion

Hantz Hercule and Adebayo Oyekan
Journal of Pharmacology and Experimental Therapeutics August 1, 2002, 302 (2) 717-724; DOI: https://doi.org/10.1124/jpet.302.2.717
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • 4-Chloro ring-substituted synthetic cathinones
  • 14-3-3 Influences Nav1.5 Response to Anti-Arrhythmic Drugs
  • Inhaled Treprostinil Palmitil in the Sugen/Hypoxia Rat Model
Show more Cardiovascular

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics