Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleABSORPTION, DISTRIBUTION, METABOLISM, AND EXCRETION

Involvement of Organic Cation Transporter 1 in Hepatic and Intestinal Distribution of Metformin

De-Sheng Wang, Johan W. Jonker, Yukio Kato, Hiroyuki Kusuhara, Alfred H. Schinkel and Yuichi Sugiyama
Journal of Pharmacology and Experimental Therapeutics August 2002, 302 (2) 510-515; DOI: https://doi.org/10.1124/jpet.102.034140
De-Sheng Wang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Johan W. Jonker
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yukio Kato
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hiroyuki Kusuhara
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Alfred H. Schinkel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yuichi Sugiyama
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Metformin, a biguanide, is widely used as an oral hypoglycemic agent for the treatment of type 2 diabetes mellitus. The purpose of the present study was to investigate the role of organic cation transporter 1 (Oct1) in the disposition of metformin. Transfection of rat Oct1 cDNA results in the time-dependent and saturable uptake of metformin by the Chinese hamster ovary cell line withKm and Vmaxvalues of 377 μM and 1386 pmol/min/mg of protein, respectively. Buformin and phenformin, two other biguanides, were also transported by rOct1 with a higher affinity than metformin: theirKm values were 49 and 16 μM, respectively. To investigate the role of Oct1 in the disposition of metformin, the tissue distribution of metformin was determined in Oct1 gene-knockout mice after i.v. administration. Distribution of metformin to the liver in Oct1(−/−) mice was more than 30 times lower than that in Oct1(+/+) mice, and can be accounted for by the extracellular space. Distribution to the small intestine was also decreased in Oct1(−/−) mice, whereas that to the kidney as well as the urinary excretion profile showed only minimal differences. In conclusion, the present findings suggest that Oct1 is responsible for the hepatic uptake as well as playing a role in the intestinal uptake of metformin, whereas the renal distribution and excretion are mainly governed by other transport mechanism(s).

Footnotes

  • This work was supported by Core Research for Evolutional Science and Technology of Japan Science and Technology Corporation. J.W.J. was supported by Grant NKI 97-1434 of the Dutch Cancer Society.

  • DOI: 10.1124/jpet.102.034140

  • Abbreviations:
    Oct
    organic cation transporter
    rOct
    rat organic cation transporter
    CHO
    Chinese hamster ovary
    HPLC
    high-performance liquid chromatography
    TEA
    tetraethylammonium
    CLtotal
    systemic clearance
    CLrenal
    renal clearance
    AUC
    area under the concentration-time curve
    • Received February 11, 2002.
    • Accepted March 27, 2002.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 302 (2)
Journal of Pharmacology and Experimental Therapeutics
Vol. 302, Issue 2
1 Aug 2002
  • Table of Contents
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Involvement of Organic Cation Transporter 1 in Hepatic and Intestinal Distribution of Metformin
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleABSORPTION, DISTRIBUTION, METABOLISM, AND EXCRETION

Involvement of Organic Cation Transporter 1 in Hepatic and Intestinal Distribution of Metformin

De-Sheng Wang, Johan W. Jonker, Yukio Kato, Hiroyuki Kusuhara, Alfred H. Schinkel and Yuichi Sugiyama
Journal of Pharmacology and Experimental Therapeutics August 1, 2002, 302 (2) 510-515; DOI: https://doi.org/10.1124/jpet.102.034140

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleABSORPTION, DISTRIBUTION, METABOLISM, AND EXCRETION

Involvement of Organic Cation Transporter 1 in Hepatic and Intestinal Distribution of Metformin

De-Sheng Wang, Johan W. Jonker, Yukio Kato, Hiroyuki Kusuhara, Alfred H. Schinkel and Yuichi Sugiyama
Journal of Pharmacology and Experimental Therapeutics August 1, 2002, 302 (2) 510-515; DOI: https://doi.org/10.1124/jpet.102.034140
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Experimental Procedures
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Transport Is Not Rate-Limiting in Morphine Glucuronidation in the Single-Pass Perfused Rat Liver Preparation
  • Enhanced Hepatic Uptake and Bioactivity of Type α1(I) Collagen Gene Promoter-Specific Triplex-Forming Oligonucleotides after Conjugation with Cholesterol
  • Characterization of P-glycoprotein Inhibition by Major Cannabinoids from Marijuana
Show more ABSORPTION, DISTRIBUTION, METABOLISM, AND EXCRETION

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics