Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • Log out
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleABSORPTION, DISTRIBUTION, METABOLISM, AND EXCRETION

Gender-Specific and Developmental Influences on the Expression of Rat Organic Anion Transporters

Susan C. N. Buist, Nathan J. Cherrington, Supratim Choudhuri, Dylan P. Hartley and Curtis D. Klaassen
Journal of Pharmacology and Experimental Therapeutics April 2002, 301 (1) 145-151; DOI: https://doi.org/10.1124/jpet.301.1.145
Susan C. N. Buist
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Nathan J. Cherrington
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Supratim Choudhuri
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Dylan P. Hartley
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Curtis D. Klaassen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Rat organic anion transporter 1 (Oat1), Oat2, and Oat3, members of the organic anion transporter family, transport some organic anions across cellular membranes. Previously, highest Oat1 and Oat3 mRNA expression was reported in kidney and Oat2 in liver. However, gender and developmental differences in Oat expression remain unknown. This study describes gender- and age-specific patterns of rat organic anion transporter expression in various tissues. Oat mRNA expression was evaluated in adult male and female Sprague-Dawley rat tissues, and developmental expression was also determined in kidneys of Sprague-Dawley rats ranging in age from days 0 through 45. Expression was quantified using branched-DNA signal amplification. Oat1 mRNA expression was primarily observed in kidney. Surprisingly, Oat2 mRNA expression was also highest in kidney rather than in liver. Moreover, considerably higher Oat2 levels were seen in female kidney as compared with male. Finally, Oat3 mRNA expression was highest in kidney of both genders, whereas a male-predominant pattern was observed in liver. At birth, all kidney Oat mRNA levels were low. Renal Oat1 expression gradually increased throughout development, approaching adult levels at 30 days of age, where at days 40 and 45 Oat1 levels were greater in males than females. Oat2 expression in kidney was minimal through day 30 but increased dramatically at day 35 in females only. Lastly, Oat3 mRNA expression in kidney matured earliest, rapidly increasing from birth through day 10. These data indicate that Oat mRNA expression is primarily localized to the kidney, and observed expression patterns may explain some previously recognized age- and gender-dependent toxicities associated with chemical exposure.

Footnotes

  • Financial support for this research was provided by National Institutes of Health Grants ES-09649, ES-09716, ES-07079, and ES-05883.

  • Abbreviations:
    PAH
    para-aminohippurate
    Oat
    rat organic anion transporter
    OAT
    human organic anion transporter
    MOPS
    4-morpholinepropanesulfonic acid
    SD
    Sprague-Dawley
    bDNA
    branched-DNA method
    • Received October 9, 2001.
    • Accepted December 20, 2001.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 301 (1)
Journal of Pharmacology and Experimental Therapeutics
Vol. 301, Issue 1
1 Apr 2002
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Gender-Specific and Developmental Influences on the Expression of Rat Organic Anion Transporters
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleABSORPTION, DISTRIBUTION, METABOLISM, AND EXCRETION

Gender-Specific and Developmental Influences on the Expression of Rat Organic Anion Transporters

Susan C. N. Buist, Nathan J. Cherrington, Supratim Choudhuri, Dylan P. Hartley and Curtis D. Klaassen
Journal of Pharmacology and Experimental Therapeutics April 1, 2002, 301 (1) 145-151; DOI: https://doi.org/10.1124/jpet.301.1.145

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleABSORPTION, DISTRIBUTION, METABOLISM, AND EXCRETION

Gender-Specific and Developmental Influences on the Expression of Rat Organic Anion Transporters

Susan C. N. Buist, Nathan J. Cherrington, Supratim Choudhuri, Dylan P. Hartley and Curtis D. Klaassen
Journal of Pharmacology and Experimental Therapeutics April 1, 2002, 301 (1) 145-151; DOI: https://doi.org/10.1124/jpet.301.1.145
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Transport Is Not Rate-Limiting in Morphine Glucuronidation in the Single-Pass Perfused Rat Liver Preparation
  • Enhanced Hepatic Uptake and Bioactivity of Type α1(I) Collagen Gene Promoter-Specific Triplex-Forming Oligonucleotides after Conjugation with Cholesterol
  • Characterization of P-glycoprotein Inhibition by Major Cannabinoids from Marijuana
Show more ABSORPTION, DISTRIBUTION, METABOLISM, AND EXCRETION

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics