Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleABSORPTION, DISTRIBUTION, METABOLISM, AND EXCRETION

Pharmacokinetic Role of P-Glycoprotein in Oral Bioavailability and Intestinal Secretion of Grepafloxacin in Vivo

Hiroaki Yamaguchi, Ikuko Yano, Hideyuki Saito and Ken-ichi Inui
Journal of Pharmacology and Experimental Therapeutics March 2002, 300 (3) 1063-1069; DOI: https://doi.org/10.1124/jpet.300.3.1063
Hiroaki Yamaguchi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ikuko Yano
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hideyuki Saito
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ken-ichi Inui
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The purpose of this study was to clarify the contribution of P-glycoprotein to the bioavailability and intestinal secretion of grepafloxacin and levofloxacin in vivo. Plasma concentrations of grepafloxacin and levofloxacin after intravenous and intraintestinal administration were increased by cyclosporin A, a P-glycoprotein inhibitor, in rats. The total body clearance and volume of distribution at steady state of grepafloxacin were significantly decreased to 60 and 63% of the corresponding control values by cyclosporin A. The apparent oral clearance of grepafloxacin was decreased to 33% of the control, and the bioavailability of grepafloxacin was increased to 95% by cyclosporin A from 53% in the controls. Intestinal clearance of grepafloxacin and levofloxacin were decreased to one-half and one-third of the control, respectively, and biliary clearance of grepafloxacin was also decreased to one-third with cyclosporin A in rats. Intestinal secretion of grepafloxacin in mdr1a/1b (−/−) mice, which lack mdr1-type P-glycoproteins, was significantly decreased compared with wild-type mice, although the biliary secretion was similar. Intestinal secretion of grepafloxacin in wild-type mice treated with cyclosporin A was comparable to those inmdr1a/1b (−/−) mice with or without cyclosporin A, indicating that cyclosporin A completely inhibited P-glycoprotein-mediated intestinal transport of grepafloxacin. In conclusion, our results indicated that P-glycoprotein mediated the intestinal secretion of grepafloxacin and limited the bioavailability of this drug in vivo.

Footnotes

  • This work was supported in part by a Grant-in-Aid for Scientific Research and a Grant-in-Aid for Scientific Research on Priority Areas of Biomolecular Design for Biotargeting (No. 296) from the Ministry of Education, Science, Sports and Culture of Japan.

  • Abbreviations:
    CL
    total body clearance
    V1
    central volume of distribution
    Q
    intercompartmental clearance
    Vss
    volume of distribution at steady-state
    F
    bioavailability
    AUC
    area under the plasma concentration-time curve
    Tmax
    time to peak plasma concentration
    Cmax
    peak plasma concentration
    MRP
    multidrug resistance-associated protein
    • Received September 12, 2001.
    • Accepted December 2, 2001.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 300 (3)
Journal of Pharmacology and Experimental Therapeutics
Vol. 300, Issue 3
1 Mar 2002
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Pharmacokinetic Role of P-Glycoprotein in Oral Bioavailability and Intestinal Secretion of Grepafloxacin in Vivo
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleABSORPTION, DISTRIBUTION, METABOLISM, AND EXCRETION

Pharmacokinetic Role of P-Glycoprotein in Oral Bioavailability and Intestinal Secretion of Grepafloxacin in Vivo

Hiroaki Yamaguchi, Ikuko Yano, Hideyuki Saito and Ken-ichi Inui
Journal of Pharmacology and Experimental Therapeutics March 1, 2002, 300 (3) 1063-1069; DOI: https://doi.org/10.1124/jpet.300.3.1063

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Research ArticleABSORPTION, DISTRIBUTION, METABOLISM, AND EXCRETION

Pharmacokinetic Role of P-Glycoprotein in Oral Bioavailability and Intestinal Secretion of Grepafloxacin in Vivo

Hiroaki Yamaguchi, Ikuko Yano, Hideyuki Saito and Ken-ichi Inui
Journal of Pharmacology and Experimental Therapeutics March 1, 2002, 300 (3) 1063-1069; DOI: https://doi.org/10.1124/jpet.300.3.1063
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Experimental Procedures
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Transport Is Not Rate-Limiting in Morphine Glucuronidation in the Single-Pass Perfused Rat Liver Preparation
  • Enhanced Hepatic Uptake and Bioactivity of Type α1(I) Collagen Gene Promoter-Specific Triplex-Forming Oligonucleotides after Conjugation with Cholesterol
  • Characterization of P-glycoprotein Inhibition by Major Cannabinoids from Marijuana
Show more ABSORPTION, DISTRIBUTION, METABOLISM, AND EXCRETION

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics