Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleGASTROINTESTINAL, HEPATIC, PULMONARY, AND RENAL

Peripheral Activity of a New NK1 Receptor Antagonist TAK-637 in the Gastrointestinal Tract

Kalina Venkova, D. M. Sutkowski-Markmann and Beverley Greenwood-Van Meerveld
Journal of Pharmacology and Experimental Therapeutics March 2002, 300 (3) 1046-1052; DOI: https://doi.org/10.1124/jpet.300.3.1046
Kalina Venkova
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D. M. Sutkowski-Markmann
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Beverley Greenwood-Van Meerveld
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Pathways controlling gastrointestinal function involve the activation of neurokinin NK1 receptors by substance P (SP) under normal and pathological conditions. Our aim was to pharmacologically characterize the effect of a nonpeptide NK1 receptor antagonist TAK-637 [(aR,9R)-7-[3,5-bis(trifluoromethyl)benzyl]-8,9,10,11-tetrahydro-9-methyl-5-(4-methylphenyl)-7H-[1,4]diazocino[2,1-g] [1,7]naphthyridine-6,13-dione] and determine key mechanisms of TAK-637 action in the gastrointestinal tract. Experiments were performed using intestinal preparations isolated from the guinea pig. The selective agonists of NK1 receptors, [Sar9,Met(O2)11]-SP and GR 73632 [H2N-(CH2)4-CO-Phe-Phe-Pro-NMe-Leu-Met-NH2], induced contractions in colonic longitudinal muscle pretreated with atropine. TAK-637 (1–100 nM) caused a rightward shift of the concentration-response curves showing nanomolar affinity against [Sar9,Met(O2)11]-SP (Kb = 4.7 nM) and GR 73632 (Kb = 1.8 nM). This antagonist effect remained unchanged by tetrodotoxin. Furthermore, neither the contractions of colonic circular muscle induced by selective activation of NK2 receptors by GR 64349 (Lys-Asp-Ser-Phe-Val-Gly-R-γ-lactam-Leu-Met-NH2) nor the responses of taenia coli induced by the selective NK3 receptor agonist senktide were affected by TAK-637 (100 nM). Studies of electrically induced neurogenic contractions showed that TAK-637 had no effect on cholinergic responses to single-pulse (0.5 ms) stimulation or stimulation with increasing frequency (1–16 Hz, 0.5 ms, 5-s train duration). In contrast, TAK-637 significantly reduced nonadrenergic, noncholinergic contractions of colonic longitudinal muscle evoked at frequencies of 8 to 16 Hz and prevented the development of capsaicin-induced contractions in isolated segments of terminal ileum. Our results indicate that TAK-637 is a selective antagonist of smooth muscle NK1 receptors that activate intestinal muscle contraction. Additionally TAK-637 inhibits neuronal NK1 receptors involved in the “local” motor response to stimulation of capsaicin-sensitive primary afferents.

Footnotes

  • Supported by a grant from TAP Pharmaceutical Products Inc., Lake Forest, IL.

  • The results were presented at the annual meeting of the American Gastroenterological Association at Atlanta, GA, May 20–23, 2001.

  • Abbreviations:
    SP
    substance P
    To
    optimal resting tension
    TTX
    tetrodotoxin
    EFS
    electrical field stimulation
    NANC
    nonadrenergic, noncholinergic
    DMSO
    dimethyl sulfoxide
    DR
    dose ratio
    TAK-637
    (aR,9R)-7-[3,5-bis(trifluoromethyl)benzyl]-8,9,10,11-tetrahydro-9-methyl-5-(4-methylphenyl)-7H-[1,4]diazocino[2,1-g] [1,7]naphthyridine-6,13-dione
    GR 64349
    Lys-Asp-Ser-Phe-Val-Gly-R-γ-lactam-Leu-Met-NH2
    GR 73632
    H2N-(CH2)4-CO-Phe-Phe-Pro-NMe-Leu-Met-NH2
    MEN-10376
    H-Asp-Tyr-d-Trp-Val-d-Trp-d-Trp-Lys-NH2
    CL
    confidence limit
    • Received October 2, 2001.
    • Accepted November 16, 2001.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 300 (3)
Journal of Pharmacology and Experimental Therapeutics
Vol. 300, Issue 3
1 Mar 2002
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Peripheral Activity of a New NK1 Receptor Antagonist TAK-637 in the Gastrointestinal Tract
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleGASTROINTESTINAL, HEPATIC, PULMONARY, AND RENAL

Peripheral Activity of a New NK1 Receptor Antagonist TAK-637 in the Gastrointestinal Tract

Kalina Venkova, D. M. Sutkowski-Markmann and Beverley Greenwood-Van Meerveld
Journal of Pharmacology and Experimental Therapeutics March 1, 2002, 300 (3) 1046-1052; DOI: https://doi.org/10.1124/jpet.300.3.1046

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleGASTROINTESTINAL, HEPATIC, PULMONARY, AND RENAL

Peripheral Activity of a New NK1 Receptor Antagonist TAK-637 in the Gastrointestinal Tract

Kalina Venkova, D. M. Sutkowski-Markmann and Beverley Greenwood-Van Meerveld
Journal of Pharmacology and Experimental Therapeutics March 1, 2002, 300 (3) 1046-1052; DOI: https://doi.org/10.1124/jpet.300.3.1046
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • MIP3α in Progressive Renal Injury Associated with Obesity
  • A Novel Long-Acting GLP-2, HM15912, for Short Bowel Syndrome
  • H2S Overproduction and Colonic Hypomotility in DM
Show more Gastrointestinal, Hepatic, Pulmonary, and Renal

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics