Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleCARDIOVASCULAR

Angiotensin I-Converting Enzyme Inhibition Increases Cardiac Catecholamine Content and Reduces Monoamine Oxidase Activity via an Angiotensin Type 1 Receptor-Mediated Mechanism

Walter Raasch, Torsten Bartels, Annabella Gieselberg, Andreas Dendorfer and Peter Dominiak
Journal of Pharmacology and Experimental Therapeutics February 2002, 300 (2) 428-434; DOI: https://doi.org/10.1124/jpet.300.2.428
Walter Raasch
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Torsten Bartels
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Annabella Gieselberg
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Andreas Dendorfer
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Peter Dominiak
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Antihypertensive and cardioprotective effects of angiotensin I-converting enzyme (ACE) inhibitors are well established and have usually been attributed to the inhibition of angiotensin II (ANG)-mediated effects at vascular or ventricular (angiotensin type 1) AT1 receptors. One other important mechanism involves ANG-induced interactions with the sympathetic nervous system, which might include alterations of cardiac catecholamine concentrations during ACE inhibition due to a modulation of monoamine oxidase (MAO) activity. Tissue catecholamines were studied in spontaneously hypertensive rats that were long-term treated with captopril (50 or 0.5 mg/kg/day), enalapril (10 or 0.1 mg/kg/day), an AT1receptor antagonist (candesartan-cilexetil, 3 mg/kg/day), or a calcium antagonist (mibefradil, 18 mg/kg/day). The kinetic parameters of MAO were then determined in vitro in the presence of ANG, captopril, enalaprilat, or candesartan. Noradrenaline and adrenaline contents were doubled in the left ventricle by captopril, enalapril, or candesartan independently of hypotensive potency but not in liver or cortex. In parallel, cardiac MAO activity was reduced by all doses of captopril (49/29%), enalapril (52/24%), or candesartan (38%). Mibefradil, which does not interact with the renin-angiotensin system, did not alter cardiac catecholamines or MAO activity when an equipotent antihypertensive dose was applied. In vitro MAO activity was not influenced by ANG, enalaprilat, or captopril at concentrations of up to 1 mM. It is concluded that diminished AT1 receptor stimulation decreases cardiac MAO activity, probably by regulating MAO expression, since ANG, ACE inhibitors, and AT1 antagonists had no effect on MAO activity in vitro. This action contributes to an increase in cardiac catecholamine content that may improve cardiac sympathetic control during therapy.

Footnotes

  • Abbreviations:
    ACE
    angiotensin I-converting enzyme
    ANG
    angiotensin II
    RAS
    renin-angiotensin systems
    AT1 receptor
    angiotensin type 1 receptor
    MAO
    monoamine oxidase
    SHR
    spontaneously hypertensive rats
    HPLC
    high-pressure liquid chromatography
    bpm
    beats per minute
    • Received May 10, 2001.
    • Accepted October 17, 2001.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 300 (2)
Journal of Pharmacology and Experimental Therapeutics
Vol. 300, Issue 2
1 Feb 2002
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Angiotensin I-Converting Enzyme Inhibition Increases Cardiac Catecholamine Content and Reduces Monoamine Oxidase Activity via an Angiotensin Type 1 Receptor-Mediated Mechanism
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleCARDIOVASCULAR

Angiotensin I-Converting Enzyme Inhibition Increases Cardiac Catecholamine Content and Reduces Monoamine Oxidase Activity via an Angiotensin Type 1 Receptor-Mediated Mechanism

Walter Raasch, Torsten Bartels, Annabella Gieselberg, Andreas Dendorfer and Peter Dominiak
Journal of Pharmacology and Experimental Therapeutics February 1, 2002, 300 (2) 428-434; DOI: https://doi.org/10.1124/jpet.300.2.428

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleCARDIOVASCULAR

Angiotensin I-Converting Enzyme Inhibition Increases Cardiac Catecholamine Content and Reduces Monoamine Oxidase Activity via an Angiotensin Type 1 Receptor-Mediated Mechanism

Walter Raasch, Torsten Bartels, Annabella Gieselberg, Andreas Dendorfer and Peter Dominiak
Journal of Pharmacology and Experimental Therapeutics February 1, 2002, 300 (2) 428-434; DOI: https://doi.org/10.1124/jpet.300.2.428
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • 4-Chloro ring-substituted synthetic cathinones
  • 14-3-3 Influences Nav1.5 Response to Anti-Arrhythmic Drugs
  • Inhaled Treprostinil Palmitil in the Sugen/Hypoxia Rat Model
Show more Cardiovascular

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics