Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleNEUROPHARMACOLOGY

Local Anesthetics Noncompetitively Inhibit Function of Four Distinct Nicotinic Acetylcholine Receptor Subtypes

Cynthia L. Gentry and Ronald J. Lukas
Journal of Pharmacology and Experimental Therapeutics December 2001, 299 (3) 1038-1048;
Cynthia L. Gentry
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ronald J. Lukas
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Local anesthetics (LAs) are considered to act primarily by inhibiting voltage-gated Na+ channels. However, LAs also are pharmacologically active at other ion channels including nicotinic acetylcholine receptors (nAChR). nAChR exist as a family of diverse subtypes, each of which has a unique pharmacological profile. The current studies established effects of LAs on function of four human nAChR subtypes: naturally expressed muscle-type (α1*-nAChR) or autonomic (α3β4*-nAChR) nAChR, or heterologously expressed nAChR containing α4 with either β2- or β4-subunits (α4β2- or α4β4-nAChR). Of the LAs tested, those with structures containing two separated aromatic rings (e.g., proadifen and adiphenine) had the greatest inhibition potency (IC50 values between 0.34 and 6.3 μM) but lowest selectivity (∼4-fold) across the four nAChR subtypes examined. From the fused, two-ring (isoquinoline backbone) class of LAs, dimethisoquin had comparatively moderate inhibition potency (IC50 values between 2.4 and 61 μM) and ∼30-fold selectivity across nAChR subtypes. Lidocaine, a commonly used LA from the single ring category of LAs, blocked nAChR function with IC50 values of between 52 and 250 μM and had only ∼5-fold selectivity across nAChR subtypes. Its quaternary triethyl ammonium analog, QX-314, had greater inhibition potency, but the trimethyl ammonium derivative, QX-222, was the least potent LA at all but the α4β2-nAChR subtype. With only a few exceptions, LA effects were consistent with noncompetitive inhibition of nAChR function and occurred at therapeutic doses. These studies suggest structural determinants for LA action at diverse nAChR subtypes and that nAChR likely are clinically relevant targets of LAs.

Footnotes

  • Supported by the FORD Foundation, by Grant 10011 from the Arizona Disease Control Research Commission, by endowment and/or capitalization funds from the Men's and Women's Boards of the Barrow Neurological Foundation, and by the Robert and Gloria Wallace Foundation and was conducted in part in the Charlotte and Harold Simensky Neurochemistry of Alzheimer's Disease Laboratory.

  • Abbreviations:
    LA
    local anesthetics
    nAChR
    nicotinic acetylcholine receptor
    carb
    carbamylcholine
    CNS
    central nervous system
    CSF
    cerebrospinal fluid
    • Received July 30, 2001.
    • Accepted September 6, 2001.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 299 (3)
Journal of Pharmacology and Experimental Therapeutics
Vol. 299, Issue 3
1 Dec 2001
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Local Anesthetics Noncompetitively Inhibit Function of Four Distinct Nicotinic Acetylcholine Receptor Subtypes
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleNEUROPHARMACOLOGY

Local Anesthetics Noncompetitively Inhibit Function of Four Distinct Nicotinic Acetylcholine Receptor Subtypes

Cynthia L. Gentry and Ronald J. Lukas
Journal of Pharmacology and Experimental Therapeutics December 1, 2001, 299 (3) 1038-1048;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleNEUROPHARMACOLOGY

Local Anesthetics Noncompetitively Inhibit Function of Four Distinct Nicotinic Acetylcholine Receptor Subtypes

Cynthia L. Gentry and Ronald J. Lukas
Journal of Pharmacology and Experimental Therapeutics December 1, 2001, 299 (3) 1038-1048;
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Substituted Tryptamine Activity at 5-HT Receptors and SERT
  • KRM-II-81 Analogs
  • VTA muscarinic M5 receptors and effort-choice behavior
Show more Neuropharmacology

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics