Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleINFLAMMATION AND IMMUNOPHARMACOLOGY

Capsaicin Inhibits Jurkat T-Cell Activation by Blocking Calcium Entry Current ICRAC

Bruce S. Fischer, Danmei Qin, Kami Kim and Thomas V. McDonald
Journal of Pharmacology and Experimental Therapeutics October 2001, 299 (1) 238-246;
Bruce S. Fischer
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Danmei Qin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kami Kim
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Thomas V. McDonald
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Capacitative calcium entry (CCE) through stores-operated Ca2+ channels is an absolute requirement for normal activation of T lymphocytes. Organic blockers/inhibitors of the channel(s) that carry the inward Ca2+ current (ICRAC) responsible for CCE are few. Here we show that capsaicin, the pungent ingredient of hot chili pepper, blocks receptor-stimulated Ca2+ entry in Jurkat T cells. Indo-1 measurements of intracellular calcium show that capsaicin blocks CCE without affecting release of inositol-1,4,5-trisphosphate-sensitive internal Ca2+ stores with an IC50 of 32 μM. Block of Ca2+ entry by capsaicin is identical whether CCE is evoked by T-cell receptor (TCR) stimulation, heterologous muscarinic M1 receptor stimulation, or via thapsigargin depletion of internal Ca2+ stores. Patch-clamp experiments show that capsaicin rapidly and reversibly blocks ICRAC with an identical dose response as seen with indo-1 measurements. The major voltage-gated K+ channel in Jurkat cells, Kv1.3, is also blocked by capsaicin. Although Kv1.3 block may contribute to reducing CCE by changes in membrane potential, block of ICRAC is the primary mechanism by which capsaicin reduces CCE. Capsaicin analogs capsazepine and resiniferatoxin also produce inhibition of CCE via block of ICRAC. Upon application of capsaicin to Jurkat cells in culture we observed an inhibition of interleukin-2 (IL-2) production in response to TCR stimulation. The dose dependence of capsaicin's reduction of IL-2 was comparable with its block of ICRAC, thereby illustrating the functional relevance of capsaicin's block of lymphocyte CCE. Thus, capsaicin and its numerous analogs may have potential use as immunomodulatory drugs and should be further investigated in models of inflammation and T-cell activation.

Footnotes

  • This work was supported by a Clinical Investigator Award from the Cancer Research Institute (to T.M.).

  • Abbreviations:
    VR
    vanilloid receptor
    CCE
    capacitative calcium entry
    [Ca2+]I
    intracellular calcium concentration
    InsP3
    inositol-1,4,5-trisphosphate
    TCR
    T-cell receptor
    ICRAC
    calcium-release-activated calcium current
    IL-2
    interleukin-2
    ELISA
    enzyme-linked immunosorbent assay
    CPZ
    capsazepine
    RTx
    resiniferatoxin
    PMA
    phorbol myristate acetate
    PHA
    phytohemagglutinin
    CCh
    carbachol
    CaT1
    calcium transport protein
    ECaC
    epithelial calcium channel
    • Received April 11, 2001.
    • Accepted June 26, 2001.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 299 (1)
Journal of Pharmacology and Experimental Therapeutics
Vol. 299, Issue 1
1 Oct 2001
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Capsaicin Inhibits Jurkat T-Cell Activation by Blocking Calcium Entry Current ICRAC
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleINFLAMMATION AND IMMUNOPHARMACOLOGY

Capsaicin Inhibits Jurkat T-Cell Activation by Blocking Calcium Entry Current ICRAC

Bruce S. Fischer, Danmei Qin, Kami Kim and Thomas V. McDonald
Journal of Pharmacology and Experimental Therapeutics October 1, 2001, 299 (1) 238-246;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleINFLAMMATION AND IMMUNOPHARMACOLOGY

Capsaicin Inhibits Jurkat T-Cell Activation by Blocking Calcium Entry Current ICRAC

Bruce S. Fischer, Danmei Qin, Kami Kim and Thomas V. McDonald
Journal of Pharmacology and Experimental Therapeutics October 1, 2001, 299 (1) 238-246;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Lipopolysaccharide Induces Epithelium- and Prostaglandin E2-Dependent Relaxation of Mouse Isolated Trachea through Activation of Cyclooxygenase (COX)-1 and COX-2
  • Cannabinoid-Mediated Elevation of Intracellular Calcium: A Structure-Activity Relationship
  • Protease-Activated Receptor-2 Peptides Activate Neurokinin-1 Receptors in the Mouse Isolated Trachea
Show more INFLAMMATION AND IMMUNOPHARMACOLOGY

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics