Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleNEUROPHARMACOLOGY

Differential Sensitivity of Mesencephalic Neurons to Inhibition of Phosphatase 2A

Gail D. Zeevalk, Laura P. Bernard, Lawrence Manzino and Patricia K. Sonsalla
Journal of Pharmacology and Experimental Therapeutics September 2001, 298 (3) 925-933;
Gail D. Zeevalk
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Laura P. Bernard
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Lawrence Manzino
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Patricia K. Sonsalla
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Disturbance in phosphorylation/dephosphorylation can trigger apoptosis. Little is known as to its effects on mesencephalic dopamine neurons, the major neurons lost in Parkinson's disease. In this study, okadaic acid (OKA), a phosphatase 1 and 2A inhibitor, with greater potency toward 2A, was toxic to mesencephalic dopamine and γ-aminobutyric acid (GABA) neurons, however, dopamine neurons were 4-fold more sensitive. The EC50 for dopamine versus GABA toxicity was 1.5 versus 6.5 nM, respectively, and was consistent with an inhibition of phosphatase 2A. Dopamine neurons were also more sensitive to calyculin-A, a phosphatase inhibitor equipotent toward 1 and 2A. OKA-methyl-ester, which lacks phosphatase inhibitory activity, was without effect. DNA laddering typical of apoptosis was observed in cultures at a concentration that was specifically toxic to dopamine neurons (5 nM). In contrast to the sensitivity of mesencephalic neurons to phosphatase inhibition, inhibition of protein kinase activity with staurosporine or K252a showed little toxicity and protected neurons from OKA. Consistent with in vitro findings, infusion of 32 to 320 pmol of OKA into the left striatum of rats caused a dose-dependent loss of striatal dopamine without any loss of GABA 1 week following infusion. Acutely, OKA increased tyrosine hydroxylase activity, a phosphatase 2A substrate, and increased dopamine turnover. The above-mentioned findings demonstrate that dysregulation of phosphatase activity is detrimental to mesencephalic neurons, with dopamine neurons, in vitro and in vivo, being relatively more sensitive to phosphatase 2A inhibition. Disturbances in the phosphorylation control of proteins unique to dopamine neurons may contribute to their enhanced vulnerability to OKA exposure.

Footnotes

  • This work was supported by U.S. Public Health Service Grant NS 36157.

  • Abbreviations:
    OKA
    okadaic acid
    PD
    Parkinson's disease
    MPP+
    1-methyl-4-phenylpyridine
    GABA
    γ-aminobutyric acid
    CM
    conditioned medium
    TH
    tyrosine hydroxylase
    DOPAC
    3,4-dihydroxyphenylacetic acid
    HVA
    homovanillic acid
    ANOVA
    analysis of variance
    PP2A
    phosphatase 2A
    PP1
    phosphatase 1
    DAT
    dopamine transporter
    • Received March 1, 2001.
    • Accepted May 2, 2001.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 298 (3)
Journal of Pharmacology and Experimental Therapeutics
Vol. 298, Issue 3
1 Sep 2001
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Differential Sensitivity of Mesencephalic Neurons to Inhibition of Phosphatase 2A
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleNEUROPHARMACOLOGY

Differential Sensitivity of Mesencephalic Neurons to Inhibition of Phosphatase 2A

Gail D. Zeevalk, Laura P. Bernard, Lawrence Manzino and Patricia K. Sonsalla
Journal of Pharmacology and Experimental Therapeutics September 1, 2001, 298 (3) 925-933;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleNEUROPHARMACOLOGY

Differential Sensitivity of Mesencephalic Neurons to Inhibition of Phosphatase 2A

Gail D. Zeevalk, Laura P. Bernard, Lawrence Manzino and Patricia K. Sonsalla
Journal of Pharmacology and Experimental Therapeutics September 1, 2001, 298 (3) 925-933;
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Substituted Tryptamine Activity at 5-HT Receptors and SERT
  • KRM-II-81 Analogs
  • VTA muscarinic M5 receptors and effort-choice behavior
Show more Neuropharmacology

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics