Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleTOXICOLOGY

Disruption of Mitochondrial Function and Cellular ATP Levels by Amiodarone and N-Desethylamiodarone in Initiation of Amiodarone-Induced Pulmonary Cytotoxicity

M. W. Bolt, J. W. Card, W. J. Racz, J. F. Brien and T. E. Massey
Journal of Pharmacology and Experimental Therapeutics September 2001, 298 (3) 1280-1289;
M. W. Bolt
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J. W. Card
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
W. J. Racz
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J. F. Brien
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T. E. Massey
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Amiodarone (AM), a potent antidysrhythmic agent, can cause potentially life-threatening pulmonary fibrosis. In the present investigation of mechanisms of initiation of AM lung toxicity, we found that 100 μM AM decreased mitochondrial membrane potential in intact hamster lung alveolar macrophages and preparations enriched in isolated alveolar type II cells and nonciliated bronchiolar epithelial (Clara) cells, following 2 h of incubation. This was followed by a drop in cellular ATP content (by 32–77%) at 4 to 6 h, and 30 to 55% loss of viability at 24 h. Supplementation of incubation media with 5.0 mM glucose or 2.0 mM niacin did not reduce AM-induced ATP depletion or cell death in macrophages, and the mitochondrial permeability transition inhibitor cyclosporin A (1.0 μM) did not affect AM cytotoxicity. At 50 μM, the AM metaboliteN-desethylamiodarone (DEA) produced effects similar to those of AM, but more rapidly and extensively, with the Clara cell-enriched preparation being particularly susceptible. In isolated whole lung mitochondria, DEA was accumulated to a greater extent than AM. Both AM and DEA inhibited complex I- and complex II-supported respiration, but DEA inhibited complex II to a greater degree than AM. These results demonstrate that AM and DEA disrupt mitochondrial membrane potential prior to ATP depletion and subsequent lung cell death, that DEA is more potent than AM, and that the mitochondrial permeability transition is not involved in mitochondrial perturbation by AM. This suggests that AM- and DEA-induced perturbations of mitochondrial function may initiate AM-induced pulmonary toxicity.

Footnotes

  • This research was supported by Canadian Institutes of Health Research (CIHR) Grant MT-13257. M.W.B. and J.W.C. are recipients of CIHR Studentships.

  • Abbreviations:
    AM
    amiodarone
    AIPT
    amiodarone-induced pulmonary toxicity
    DEA
    desethylamiodarone
    JC-1
    1,1′,3,3′-tetraethylbenzimidazolylcarbocyanine iodide
    FCCP
    carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone
    RCR
    respiratory control ratio
    HPLC
    high-performance liquid chromatography
    ANOVA
    analysis of variance
    MPT
    mitochondrial permeability transition
    • Received March 2, 2001.
    • Accepted May 22, 2001.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 298 (3)
Journal of Pharmacology and Experimental Therapeutics
Vol. 298, Issue 3
1 Sep 2001
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Disruption of Mitochondrial Function and Cellular ATP Levels by Amiodarone and N-Desethylamiodarone in Initiation of Amiodarone-Induced Pulmonary Cytotoxicity
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleTOXICOLOGY

Disruption of Mitochondrial Function and Cellular ATP Levels by Amiodarone and N-Desethylamiodarone in Initiation of Amiodarone-Induced Pulmonary Cytotoxicity

M. W. Bolt, J. W. Card, W. J. Racz, J. F. Brien and T. E. Massey
Journal of Pharmacology and Experimental Therapeutics September 1, 2001, 298 (3) 1280-1289;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleTOXICOLOGY

Disruption of Mitochondrial Function and Cellular ATP Levels by Amiodarone and N-Desethylamiodarone in Initiation of Amiodarone-Induced Pulmonary Cytotoxicity

M. W. Bolt, J. W. Card, W. J. Racz, J. F. Brien and T. E. Massey
Journal of Pharmacology and Experimental Therapeutics September 1, 2001, 298 (3) 1280-1289;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Nafamostat is a potent human diamine oxidase inhibitor
  • Chemoproteomics Investigation of Testicular Toxicity with BTK Inhibitor
  • Bosentan Alters Bile Salt Disposition
Show more Toxicology

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics