Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleENDOCRINE AND REPRODUCTIVE

Assessment of the Effects of Metabolism on the Estrogenic Activity of Xenoestrogens: A Two-Stage Approach Coupling Human Liver Microsomes and a Yeast Estrogenicity Assay

Robert Elsby, James L. Maggs, John Ashby, David Paton, John P. Sumpter and B. Kevin Park
Journal of Pharmacology and Experimental Therapeutics February 2001, 296 (2) 329-337;
Robert Elsby
1 2 3
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
James L. Maggs
1 2 3
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
John Ashby
1 2 3
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
David Paton
1 2 3
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
John P. Sumpter
1 2 3
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
B. Kevin Park
1 2 3
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Concern that the reproductive health of humans is being affected by exposure to xenoestrogens has led to the development of various in vitro and in vivo screening assays for the identification of suspected xenoestrogens. However, the estrogenic activity of a chemical determined in vitro may not necessarily predict its activity in vivo if the chemical is metabolized during the assay and/or in vivo. Therefore, to investigate the role of metabolism in modulating the estrogenic activity of suspected xenoestrogens, we have devised a two-stage approach coupling incubations with either human or rat hepatic microsomes with a yeast estrogenicity (transcription) assay. We have assessed the activity of the proestrogenic pesticide 99.5% methoxychlor [1,1,1-trichloro-2,2-bis-(4-methoxyphenyl)ethane, MXC] (EC50 = 4.45 ± 1.9 μM, n = 6) and a structural analog, methoxybisphenol A [2,2-bis-(4-methoxyphenyl) propane, MBPA], in the yeast estrogenicity assay and also established that yeast (Saccharomyces cerevisiae), unlike human liver microsomes, are not able to demethylate MXC or MBPA to estrogenic metabolites. This indicates that the proestrogen MXC has weak intrinsic estrogenic activity. Using 99.5% MXC and 17β-estradiol as paradigms, we have demonstrated how metabolism can enhance or suppress, respectively, estrogenic activity. The effect of metabolism on the activities of the weak xenoestrogens 3,17β-bisdesoxyestradiol [1,3,5(10)-estratriene] and 6-hydroxytetralin (5,6,7,8-tetrahydro-2-naphthol) was also assessed. This two-stage approach can distinguish the estrogenic activity of a suspect chemical from the activity due to its more, or less, active metabolites and will aid in the evaluation of novel xenoestrogens and, more importantly, proestrogens.

Footnotes

    • Received July 5, 2000.
    • Accepted October 5, 2000.
  • Send reprint requests to: Professor B. K. Park, Department of Pharmacology and Therapeutics, University of Liverpool, New Medical Bldg., Ashton St., Liverpool L69 3BX, UK. E-mail:bkpark{at}liverpool.ac.uk

  • This work was supported by a collaborative studentship between the Medical Research Council and AstraZeneca Central Toxicology Laboratory (to R.E.). B.K.P. is a Wellcome Principal Fellow. The LC-MS system was purchased and maintained with grants from the Wellcome Trust.

  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 296 (2)
Journal of Pharmacology and Experimental Therapeutics
Vol. 296, Issue 2
1 Feb 2001
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Assessment of the Effects of Metabolism on the Estrogenic Activity of Xenoestrogens: A Two-Stage Approach Coupling Human Liver Microsomes and a Yeast Estrogenicity Assay
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleENDOCRINE AND REPRODUCTIVE

Assessment of the Effects of Metabolism on the Estrogenic Activity of Xenoestrogens: A Two-Stage Approach Coupling Human Liver Microsomes and a Yeast Estrogenicity Assay

Robert Elsby, James L. Maggs, John Ashby, David Paton, John P. Sumpter and B. Kevin Park
Journal of Pharmacology and Experimental Therapeutics February 1, 2001, 296 (2) 329-337;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Research ArticleENDOCRINE AND REPRODUCTIVE

Assessment of the Effects of Metabolism on the Estrogenic Activity of Xenoestrogens: A Two-Stage Approach Coupling Human Liver Microsomes and a Yeast Estrogenicity Assay

Robert Elsby, James L. Maggs, John Ashby, David Paton, John P. Sumpter and B. Kevin Park
Journal of Pharmacology and Experimental Therapeutics February 1, 2001, 296 (2) 329-337;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgment
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Role of Protein Kinase C-Ras-MAPK p44/42 in Ethanol and Transforming Growth Factor-β3-Induced Basic Fibroblast Growth Factor Release from Folliculostellate Cells
  • Therapeutic Actions of an Insulin Receptor Activator and a Novel Peroxisome Proliferator-Activated Receptor γ Agonist in the Spontaneously Hypertensive Obese Rat Model of Metabolic Syndrome X
  • Hepatic Glucocorticoid Receptor Antagonism Is Sufficient to Reduce Elevated Hepatic Glucose Output and Improve Glucose Control in Animal Models of Type 2 Diabetes
Show more ENDOCRINE AND REPRODUCTIVE

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics