Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleCARDIOVASCULAR

Regional Differences in Anandamide- and Methanandamide-Induced Membrane Potential Changes in Rat Mesenteric Arteries

Bert Vanheel and Johan Van de Voorde
Journal of Pharmacology and Experimental Therapeutics February 2001, 296 (2) 322-328;
Bert Vanheel
Department of Physiology and Physiopathology, Ghent University, Ghent, Belgium
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Johan Van de Voorde
Department of Physiology and Physiopathology, Ghent University, Ghent, Belgium
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The possibility that anandamide is an endothelium-derived hyperpolarizing factor was explored in the rat mesenteric vasculature by use of conventional microelectrode techniques. In the main mesenteric artery, anandamide and its more stable analog methanandamide hardly caused a measurable change in membrane potential of the smooth muscle cells, which promptly hyperpolarized to EDHF liberated by acetylcholine. Inhibition of endogenous anandamide breakdown by phenylmethylsulfonyl fluoride did not increase membrane responses to acetylcholine. The CB1 receptor antagonist SR141716 did not significantly influence EDHF-mediated hyperpolarization except at extremely high concentrations. Smooth muscle cells of third to fourth order branches of the mesenteric artery, which have a more negative resting membrane potential and show smaller responses to acetylcholine, hyperpolarized by about 6 mV to both anandamide and methanandamide, whereas another CB1receptor agonist, WIN 55,212-2, had no effect. Mechanical endothelium removal or pre-exposure to SR141716A did not affect anandamide- and methanandamide-induced hyperpolarizations. However, in the presence of capsazepine, a selective vanilloid receptor antagonist, these membrane potential changes were reversed to a small depolarization, whereas EDHF-induced hyperpolarizations were not affected. Pretreating small vessels with capsaicin, causing desensitization of vanilloid receptors and/or depletion of sensory neurotransmitter, completely blocked methanandamide-induced hyperpolarizations. These findings show that anandamide cannot be EDHF. In smooth muscle cells of small arteries, anandamide-induced changes in membrane potential are mediated by vanilloid receptors on capsaicin-sensitive sensory nerves. The different membrane response to the cannabinoids between the main mesenteric artery and its daughter branches might be explained by the different density of perivascular innervation.

Footnotes

    • Received June 28, 2000.
    • Accepted October 11, 2000.
  • Send reprint requests to: Bert Vanheel, Department of Physiology and Physiopathology, Ghent University, U. Z.-Blok B, De Pintelaan 185, B-9000 Ghent, Belgium. E-mail: Bert.Vanheel{at}rug.ac.be

  • This work was supported by the Fund for Scientific Research of the Flanders (Belgium) (FWO-Vlaanderen). B.V. is a senior research associate of the FWO-Vlaanderen.

  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 296 (2)
Journal of Pharmacology and Experimental Therapeutics
Vol. 296, Issue 2
1 Feb 2001
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Regional Differences in Anandamide- and Methanandamide-Induced Membrane Potential Changes in Rat Mesenteric Arteries
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleCARDIOVASCULAR

Regional Differences in Anandamide- and Methanandamide-Induced Membrane Potential Changes in Rat Mesenteric Arteries

Bert Vanheel and Johan Van de Voorde
Journal of Pharmacology and Experimental Therapeutics February 1, 2001, 296 (2) 322-328;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Research ArticleCARDIOVASCULAR

Regional Differences in Anandamide- and Methanandamide-Induced Membrane Potential Changes in Rat Mesenteric Arteries

Bert Vanheel and Johan Van de Voorde
Journal of Pharmacology and Experimental Therapeutics February 1, 2001, 296 (2) 322-328;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Experimental Procedures
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • Abbreviations
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Improved Assessment of Cardiovascular Safety Data
  • β3-Agonist Improves Myocardial Stiffness
  • A Novel Inhibitor of Myocardial mPTP
Show more Cardiovascular

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics