Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleGASTROINTESTINAL, HEPATIC, PULMONARY, AND RENAL

A Turnover Model of Irreversible Inhibition of Gastric Acid Secretion by Omeprazole in the Dog

Angela Äbelö, Ulf G. Eriksson, Mats O. Karlsson, Håkan Larsson and Johan Gabrielsson
Journal of Pharmacology and Experimental Therapeutics November 2000, 295 (2) 662-669;
Angela Äbelö
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ulf G. Eriksson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mats O. Karlsson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Håkan Larsson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Johan Gabrielsson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

A turnover model for irreversible inhibition of gastric acid secretion by omeprazole in gastric fistula dogs was developed using data from studies with both short- and long-term measurement periods. In the short-term experiments, after stimulation of acid secretion with histamine, the dogs were infused i.v. with omeprazole and acid secretion was measured for 5 h. Dose and infusion times were varied to produce different concentration-time profiles and schedule dependence in the inhibitory effect of omeprazole was observed. In the long-term experiments, dogs were given single intraduodenal doses, which inhibited the acid secretion for several days. Combining the short-term and long-term data allowed the observation of a biphasic recovery of acid secretion that was described by the turnover model. Second order association rate constants (kome) for the covalent binding of omeprazole to H+,K+-ATPase were estimated to 11 and 3.0 l/μmol/h for the i.v. and intraduodenal experiments, respectively. The apparent turnover rate constant of the enzyme (kout) was 0.013 h−1 and the corresponding half-life of inhibition of acid secretory capacity was 54 h. The potency, calculated as koutover kome, was 4.3 and 1.2 nM for the intraduodenal and i.v. doses, respectively. Allometric scaling of the model resulted in trustworthy predictions for observations previously done in humans. The model predicted a good correlation between maximal inhibitory effect and exposure (area under the plasma concentration curve). The time dependence in this relation was also predicted by the model.

Footnotes

  • Send reprint requests to: Angela Äbelö, AstraZeneca R&D Mölndal, S-431 83 Mölndal, Sweden. E-mail:angela.abelo{at}astrazeneca.com

  • Abbreviations:
    i.d.
    intraduodenal
    AUC
    area under the plasma concentration curve
    V
    volume of distribution
    F
    bioavailability
    CL
    clearance
    • Received March 17, 2000.
    • Accepted August 3, 2000.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 295 (2)
Journal of Pharmacology and Experimental Therapeutics
Vol. 295, Issue 2
1 Nov 2000
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
A Turnover Model of Irreversible Inhibition of Gastric Acid Secretion by Omeprazole in the Dog
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleGASTROINTESTINAL, HEPATIC, PULMONARY, AND RENAL

A Turnover Model of Irreversible Inhibition of Gastric Acid Secretion by Omeprazole in the Dog

Angela Äbelö, Ulf G. Eriksson, Mats O. Karlsson, Håkan Larsson and Johan Gabrielsson
Journal of Pharmacology and Experimental Therapeutics November 1, 2000, 295 (2) 662-669;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Research ArticleGASTROINTESTINAL, HEPATIC, PULMONARY, AND RENAL

A Turnover Model of Irreversible Inhibition of Gastric Acid Secretion by Omeprazole in the Dog

Angela Äbelö, Ulf G. Eriksson, Mats O. Karlsson, Håkan Larsson and Johan Gabrielsson
Journal of Pharmacology and Experimental Therapeutics November 1, 2000, 295 (2) 662-669;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgment
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Knockout of Add3 Promotes L-NAME-Induced Renal Injury
  • Neuraminidase-1 Inhibition Therapy for Lung Fibrosis
  • GPER activation prevented the development of acute colitis
Show more Gastrointestinal, Hepatic, Pulmonary, and Renal

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics