Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleNEUROPHARMACOLOGY

Effects of Microdialyzed Oxotremorine, Carbachol, Epibatidine, and Scopolamine on Intraspinal Release of Acetylcholine in the Rat

A. Urban Höglund, Charlotte Hamilton and Lars Lindblom
Journal of Pharmacology and Experimental Therapeutics October 2000, 295 (1) 100-104;
A. Urban Höglund
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Charlotte Hamilton
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Lars Lindblom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Intrathecally administered cholinergic agonists such as oxotremorine (muscarinic), carbachol (mixed nicotinic and muscarinic agonist), and epibatidine (nicotinic) have all been shown to reduce nociception in behavioral studies. Thus, there is substantial evidence for a role of acetylcholine (ACh) in the control of nociception in the spinal cord, but the mechanisms regulating ACh release are not known. The present study was initiated to establish a rat model to study which mechanisms are involved in the control of ACh release. Spinal microdialysis probes were inserted intraspinally at the C1–C5 spinal level in isoflurane-anesthetized rats. The probes were perfused with Ringer's solution containing 10 μM neostigmine to prevent degradation of ACh. Oxotremorine, carbachol, epibatidine, and scopolamine, dissolved in Ringer's solution, were administered intraspinally via dialysis and 30 μl/10-min samples of dialysate were collected for HPLC analysis of ACh content. The release of ACh was found to be constant in the control (Ringer's only) situation during the experimental period of 150 min. Oxotremorine (100–1000 μM), carbachol (1 mM), and epibatidine (50–5000 μM) enhanced but scopolamine (50–200 nM) decreased the intraspinal release of ACh. Oxotremorine (ED50 = 118 μM) and epibatidine (ED50 = 175 μM) were found to produce a dose-dependent increase of ACh release. Cholinergic agonists caused an increase of intraspinal ACh and the antagonist scopolamine caused a decreased release of ACh. The data do not support an autoreceptor function of either nicotinic or muscarinic receptors in the spinal cord, contrary to what has been observed in the brain.

Footnotes

  • Send reprint requests to: A. U. Höglund, Department of Physiology, Biomedical Center, Box 572, Uppsala University, S-751 23 Uppsala, Sweden. E-mail: urban.hoglund{at}bmc.uu.se

  • ↵1 This study was at an initial state supported by National Institutes of Health Grants HL-57120 and K98-04R-12790. The work also was supported by The Swedish Medical Research Council (K98-04R-12790) and Swedish Match (200006).

  • Abbreviations:
    mAChR
    muscarinic acetylcholine receptor
    • Received April 21, 2000.
    • Accepted June 9, 2000.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 295 (1)
Journal of Pharmacology and Experimental Therapeutics
Vol. 295, Issue 1
1 Oct 2000
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Effects of Microdialyzed Oxotremorine, Carbachol, Epibatidine, and Scopolamine on Intraspinal Release of Acetylcholine in the Rat
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleNEUROPHARMACOLOGY

Effects of Microdialyzed Oxotremorine, Carbachol, Epibatidine, and Scopolamine on Intraspinal Release of Acetylcholine in the Rat

A. Urban Höglund, Charlotte Hamilton and Lars Lindblom
Journal of Pharmacology and Experimental Therapeutics October 1, 2000, 295 (1) 100-104;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleNEUROPHARMACOLOGY

Effects of Microdialyzed Oxotremorine, Carbachol, Epibatidine, and Scopolamine on Intraspinal Release of Acetylcholine in the Rat

A. Urban Höglund, Charlotte Hamilton and Lars Lindblom
Journal of Pharmacology and Experimental Therapeutics October 1, 2000, 295 (1) 100-104;
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • KRM-II-81 Analogs
  • Substituted Tryptamine Activity at 5-HT Receptors and SERT
  • VTA muscarinic M5 receptors and effort-choice behavior
Show more Neuropharmacology

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics