Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleNEUROPHARMACOLOGY

The Effects of High-Dose Methamphetamine in the Aging Rat: Differential Reinforcement of Low-Rate 72-s Schedule Behavior and Neurochemistry

Karen E. Sabol, Jerry B. Richards and Kenneth Yung
Journal of Pharmacology and Experimental Therapeutics September 2000, 294 (3) 850-863;
Karen E. Sabol
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jerry B. Richards
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kenneth Yung
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

High-dose methamphetamine (METH) causes damage to the dopamine and serotonin neurons in the brains of laboratory animals. The purpose of this report was to determine the long-term consequences of high-dose METH treatment on behavior and neurochemistry. Rats were trained on the differential reinforcement of low-rate 72-s (DRL 72-s) schedule of reinforcement. Twelve weeks after training began (age 23 weeks), they received one or three high-dose METH regimens. Each regimen consisted of four injections of 15 mg/kg, at 2-h intervals. Each regimen was separated by 7 weeks. A second group received METH treatment at age 23 weeks, but behavioral training was not initiated until the rats reached age 60 weeks. A third group received METH treatment without behavioral training. DRL behavior showed mild impairments 3 to 18 weeks after the onset of treatment; the impairments did not persist into middle age. At age 70 weeks, serotonin concentrations were decreased in somatosensory cortex, occipital cortex, and hippocampus but not in other subcortical structures. Serotonin tissue concentrations were enhanced in septum and striatum but only in rats receiving three regimens and behavioral training. Dopamine was not depleted at age 70 weeks. In three additional groups, one, two, or three METH regimens were administered, and tissue concentrations were measured 6 weeks after the last treatment (corresponding to the times of the behavioral test blocks in the DRL experiments). Serotonin depletions were noted in cortex, hippocampus, amygdala, and striatum but not in septum, hypothalamus, nucleus accumbens/olfactory tubercle, or ventral midbrain. Dopamine was decreased in striatum and septum but not in nucleus accumbens/olfactory tubercle, amygdala, hypothalamus, or ventral midbrain. DRL 72-s schedule impairments are attributed to serotonin depletions. Three METH regimens did not result in greater behavioral or neurochemical deficits than one regimen.

Footnotes

  • Send reprint requests to: Dr. Karen E. Sabol, University of Mississippi, Department of Psychology, 205 Peabody Bldg., University, MS 38677. E-mail: ksabol{at}olemiss.edu

  • ↵1 This work was supported by National Institute on Drug Abuse Grant 08588.

  • Abbreviations:
    METH
    methamphetamine
    6-OHDA
    6-hydroxydopamine
    IRT
    interresponse time
    PkA
    peak area
    PkL
    peak location
    SAL
    saline
    DRL
    differential reinforcement of low-rate
    5,7-DHT
    5,7-dihydroxytryptamine
    • Received November 8, 1999.
    • Accepted May 11, 2000.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 294 (3)
Journal of Pharmacology and Experimental Therapeutics
Vol. 294, Issue 3
1 Sep 2000
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
The Effects of High-Dose Methamphetamine in the Aging Rat: Differential Reinforcement of Low-Rate 72-s Schedule Behavior and Neurochemistry
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleNEUROPHARMACOLOGY

The Effects of High-Dose Methamphetamine in the Aging Rat: Differential Reinforcement of Low-Rate 72-s Schedule Behavior and Neurochemistry

Karen E. Sabol, Jerry B. Richards and Kenneth Yung
Journal of Pharmacology and Experimental Therapeutics September 1, 2000, 294 (3) 850-863;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleNEUROPHARMACOLOGY

The Effects of High-Dose Methamphetamine in the Aging Rat: Differential Reinforcement of Low-Rate 72-s Schedule Behavior and Neurochemistry

Karen E. Sabol, Jerry B. Richards and Kenneth Yung
Journal of Pharmacology and Experimental Therapeutics September 1, 2000, 294 (3) 850-863;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Glycine receptor modulation using monoclonal antibodies
  • Iclepertin (BI 425809) in Schizophrenia-Related Models
  • D1 Agonist Versus Methylphenidate on PFC Working Memory
Show more Neuropharmacology

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics