Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleABSORPTION, DISTRIBUTION, METABOLISM, AND EXCRETION

Cellular Uptake of Dietary Flavonoid Quercetin 4′-β-Glucoside by Sodium-Dependent Glucose Transporter SGLT1

Richard A. Walgren, Jiann-Trzuo Lin, Rolf K.-H. Kinne and Thomas Walle
Journal of Pharmacology and Experimental Therapeutics September 2000, 294 (3) 837-843;
Richard A. Walgren
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jiann-Trzuo Lin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Rolf K.-H. Kinne
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Thomas Walle
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Although it has been suggested that the intestinal glucose transporter may actively absorb dietary flavonoid glucosides, there is a lack of direct evidence for their transport by this system. In fact, our previous studies with the human Caco-2 cell model of intestinal absorption demonstrated that a major dietary flavonoid, quercetin 4′-β-glucoside, is effluxed by apically expressed multidrug resistance-associated protein-2, potentially masking evidence for active absorption. The objective of this study was to test the hypothesis that quercetin 4′-β-glucoside is a substrate for the intestinal sodium-dependent d-glucose cotransporter SGLT1. Cellular uptake of quercetin 4′-β-glucoside was examined with Caco-2 cells and SGLT1 stably transfected Chinese hamster ovary cells (G6D3 cells). Although quercetin 4′-β-glucoside is not absorbed across Caco-2 cell monolayers, examination of the cells by indirect fluorescent microscopy as well as by HPLC analysis of cellular content revealed cellular accumulation of this glucoside after apical loading. Consistent with previous observations, the accumulation of quercetin 4′-β-glucoside in both Caco-2 and G6D3 cells was markedly enhanced in the presence of multidrug resistance-associated protein inhibition. Uptake of quercetin 4′-β-glucoside was greater in SGLT1-transfected cells than in parental Chinese hamster ovary cells. Uptake of the glucoside by Caco-2 and G6D3 cells was sodium-dependent and was inhibited by the monovalent ionophore nystatin. In both Caco-2 and G6D3 cells, quercetin 4′-β-glucoside uptake was inhibited by 30 mM glucose and 0.5 mM phloridzin. These results demonstrate for the first time that quercetin 4′-β-glucoside is transported by SGLT1 across the apical membrane of enterocytes.

Footnotes

  • Send reprint requests to: Thomas Walle, Ph.D., Medical University of South Carolina, Department of Cell and Molecular Pharmacology and Experimental Therapeutics, 173 Ashley Ave., P.O. Box 250505, Charleston, SC 29425. E-mail: wallet{at}musc.edu

  • ↵1 This study was supported by National Institutes of Health Grant GM55561.

  • ↵2 T. Walle, Y. Otake, A. L. Jones, U. K. Walle and F. A. Wilson (2000) Bioavailability of the flavonoid quercetin in ileostomy patients. Poster abstract no. 1278, Americal Association for Cancer Research 91st Annual Meeting.

  • Abbreviations:
    SGLT1
    sodium-dependent d-glucose cotransporter
    MRP
    multidrug resistance-associated protein
    CHO
    Chinese hamster ovary
    MEM
    miminum essential medium
    • Received March 6, 2000.
    • Accepted May 5, 2000.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 294 (3)
Journal of Pharmacology and Experimental Therapeutics
Vol. 294, Issue 3
1 Sep 2000
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Cellular Uptake of Dietary Flavonoid Quercetin 4′-β-Glucoside by Sodium-Dependent Glucose Transporter SGLT1
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleABSORPTION, DISTRIBUTION, METABOLISM, AND EXCRETION

Cellular Uptake of Dietary Flavonoid Quercetin 4′-β-Glucoside by Sodium-Dependent Glucose Transporter SGLT1

Richard A. Walgren, Jiann-Trzuo Lin, Rolf K.-H. Kinne and Thomas Walle
Journal of Pharmacology and Experimental Therapeutics September 1, 2000, 294 (3) 837-843;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleABSORPTION, DISTRIBUTION, METABOLISM, AND EXCRETION

Cellular Uptake of Dietary Flavonoid Quercetin 4′-β-Glucoside by Sodium-Dependent Glucose Transporter SGLT1

Richard A. Walgren, Jiann-Trzuo Lin, Rolf K.-H. Kinne and Thomas Walle
Journal of Pharmacology and Experimental Therapeutics September 1, 2000, 294 (3) 837-843;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgment
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Transport Is Not Rate-Limiting in Morphine Glucuronidation in the Single-Pass Perfused Rat Liver Preparation
  • Enhanced Hepatic Uptake and Bioactivity of Type α1(I) Collagen Gene Promoter-Specific Triplex-Forming Oligonucleotides after Conjugation with Cholesterol
  • Characterization of P-glycoprotein Inhibition by Major Cannabinoids from Marijuana
Show more ABSORPTION, DISTRIBUTION, METABOLISM, AND EXCRETION

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics