Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleABSORPTION, DISTRIBUTION, METABOLISM, AND EXCRETION

Targeting Rat Anti-Mouse Transferrin Receptor Monoclonal Antibodies through Blood-Brain Barrier in Mouse

Hwa Jeong Lee, Britta Engelhardt, Jayne Lesley, Ulrich Bickel and William M. Pardridge
Journal of Pharmacology and Experimental Therapeutics March 2000, 292 (3) 1048-1052;
Hwa Jeong Lee
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Britta Engelhardt
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jayne Lesley
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ulrich Bickel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
William M. Pardridge
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Drug targeting through the brain capillary endothelium, which forms the blood-brain barrier (BBB) in vivo, may be achieved with peptidomimetic monoclonal antibodies that target peptide transcytosis systems on the BBB in vivo. Murine monoclonal antibodies to the rat transferrin receptor, such as the OX26 monoclonal antibody, are targeted through the BBB on the transferrin receptor in the rat. However, the present studies show the OX26 monoclonal antibody is not an effective brain delivery vector in mice. The emergence of transgenic mouse models creates a need for brain drug-targeting vectors for this species. Two rat monoclonal antibodies, 8D3 and RI7-217, to the mouse transferrin receptor were evaluated in the present studies. Both the RI7-217 and the 8D3 antibody had comparable permeability-surface area products at the mouse BBB in vivo. However, owing to a higher plasma area under the concentration curve, the mouse brain uptake of the 8D3 antibody was higher, 3.1 ± 0.4% of injected dose [(ID)/g] compared with the brain uptake of the RI7 antibody, 1.6 ± 0.2% ID/g, at 60 min after i.v. injection. Conversely, the mouse brain uptake of the OX26 antibody, which does not recognize the mouse transferrin receptor, was negligible, 0.06 ± 0.01% ID/g. The RI7-127 antibody was more selective for brain because this antibody was not measureably taken up by liver. The capillary depletion technique demonstrated transcytosis of the RI7-217 antibody through the mouse BBB in vivo. The brain uptake of the 8D3 antibody was saturable, consistent with a receptor-mediated transport process. In conclusion, these studies indicate rat monoclonal antibodies to the mouse transferrin receptor may be used for brain drug-targeting studies in mice such as transgenic mouse models.

Footnotes

  • Send reprint requests to: Dr. William M. Pardridge, Department of Medicine, UCLA School of Medicine, Los Angeles, CA 90095-1682. E-mail:wpardridge{at}mednet.ucla.edu

  • ↵1 This work was supported by the U.S. Department of Energy.

  • Abbreviations:
    BBB
    blood-brain barrier
    mAb
    monoclonal antibody
    TfR
    transferrin receptor
    TCA
    trichloroacetic acid
    AUC
    plasma area under the concentration curve
    MRT
    mean residence time
    PS
    permeability-surface area
    ID
    injected dose
    • Received September 27, 1999.
    • Accepted December 4, 1999.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 292 (3)
Journal of Pharmacology and Experimental Therapeutics
Vol. 292, Issue 3
1 Mar 2000
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Targeting Rat Anti-Mouse Transferrin Receptor Monoclonal Antibodies through Blood-Brain Barrier in Mouse
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleABSORPTION, DISTRIBUTION, METABOLISM, AND EXCRETION

Targeting Rat Anti-Mouse Transferrin Receptor Monoclonal Antibodies through Blood-Brain Barrier in Mouse

Hwa Jeong Lee, Britta Engelhardt, Jayne Lesley, Ulrich Bickel and William M. Pardridge
Journal of Pharmacology and Experimental Therapeutics March 1, 2000, 292 (3) 1048-1052;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleABSORPTION, DISTRIBUTION, METABOLISM, AND EXCRETION

Targeting Rat Anti-Mouse Transferrin Receptor Monoclonal Antibodies through Blood-Brain Barrier in Mouse

Hwa Jeong Lee, Britta Engelhardt, Jayne Lesley, Ulrich Bickel and William M. Pardridge
Journal of Pharmacology and Experimental Therapeutics March 1, 2000, 292 (3) 1048-1052;
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Experimental Procedures
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Transport Is Not Rate-Limiting in Morphine Glucuronidation in the Single-Pass Perfused Rat Liver Preparation
  • Enhanced Hepatic Uptake and Bioactivity of Type α1(I) Collagen Gene Promoter-Specific Triplex-Forming Oligonucleotides after Conjugation with Cholesterol
  • Characterization of P-glycoprotein Inhibition by Major Cannabinoids from Marijuana
Show more ABSORPTION, DISTRIBUTION, METABOLISM, AND EXCRETION

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics