Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleArticle

A Critical Role of theN-Methyl-d-aspartate (NMDA) Receptor Subunit (NR) 2A in the Expression of Redox Sensitivity of NR1/NR2A Recombinant NMDA Receptors

Jessica C. Brimecombe, William K. Potthoff and Elias Aizenman
Journal of Pharmacology and Experimental Therapeutics November 1999, 291 (2) 785-792;
Jessica C. Brimecombe
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
William K. Potthoff
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Elias Aizenman
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

In recombinant N-methyl-d-aspartate (NMDA) receptors, two redox modulatory sites are thought to exist, one formed by Cys744 and Cys798 on NMDA receptor subunit (NR) 1, and a second one, not yet localized, on NR2A. Reductants increase the open dwell-time and opening frequency of NR1/NR2A channels. In contrast, NR1/NR2B and NR1/NR2C channels exhibit changes only in opening frequency after redox treatments. Here, we evaluated whether the two redox sites act independently of each other, with the NR1 site affecting the opening frequency and the NR2A site altering open dwell-time. Unitary and whole-cell currents mediated by NMDA receptors composed of a cysteine-mutated NR1 subunit, NR1(C744A, C798A) were thus investigated. Dithiothreitol increased the open dwell-time and opening frequency of NR1(C744A, C798A)/NR2A receptors in a manner indistinguishable from that previously seen in wild-type channels. Marginal redox-induced changes in opening frequency of NR1(C744A, C798A)/NR2B receptors were noted. Redox modulation was completely abolished in NR1(C744A, C798A)/NR2C channels. Whole-cell recordings confirmed the single-channel results. Sulfhydryl reagents modulated NR1(C744A, C798A)/NR2A receptors identically to wild-type NR1/NR2A channels, whereas NR1(C744A, C798A)/NR2C receptors were insensitive to redox modulation. The oxidant 5,5′-dithio-bis-(2-nitrobenzoate) attenuated NR1(C744A, C798A)/NR2B receptor-mediated responses in a dithiothreitol-reversible manner. We conclude that cysteines 744 and 798 on the NR1 subunit are not involved in the redox modulation of NR1/NR2A receptors, but are crucial for the modulation of NR1/NR2C-containing receptors. This suggests that the NR2A subunit is necessary and sufficient for the expression of redox sensitivity in NR1/NR2A channels. The slight, but measurable residual redox sensitivity of the mutant NR1(C744A, C798A)/NR2B receptors suggests the existence of an additional redox-sensitive site on NR2B.

Footnotes

  • Send reprint requests to: Dr. Elias Aizenman, Department of Neurobiology, E1456 BST, University of Pittsburgh School of Medicine, 3500 Terrace St., Pittsburgh, PA 15261. E-mail:redox+{at}pitt.edu

  • ↵1 This work was supported by National Institutes of Health Grant NS29365.

  • Abbreviations:
    NMDA
    N-methyl-d-aspartate
    CHO
    Chinese hamster ovary
    cys
    cysteine
    DTNB
    5,5′-dithio-bis(2-nitrobenzoic acid)
    DTT
    dithiothreitol
    F
    opening frequency
    GFP
    green fluorescent protein
    NR
    NMDA receptor subunit
    OT
    open time
    • Received March 25, 1999.
    • Accepted July 8, 1999.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 291 (2)
Journal of Pharmacology and Experimental Therapeutics
Vol. 291, Issue 2
1 Nov 1999
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
A Critical Role of theN-Methyl-d-aspartate (NMDA) Receptor Subunit (NR) 2A in the Expression of Redox Sensitivity of NR1/NR2A Recombinant NMDA Receptors
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

A Critical Role of theN-Methyl-d-aspartate (NMDA) Receptor Subunit (NR) 2A in the Expression of Redox Sensitivity of NR1/NR2A Recombinant NMDA Receptors

Jessica C. Brimecombe, William K. Potthoff and Elias Aizenman
Journal of Pharmacology and Experimental Therapeutics November 1, 1999, 291 (2) 785-792;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Research ArticleArticle

A Critical Role of theN-Methyl-d-aspartate (NMDA) Receptor Subunit (NR) 2A in the Expression of Redox Sensitivity of NR1/NR2A Recombinant NMDA Receptors

Jessica C. Brimecombe, William K. Potthoff and Elias Aizenman
Journal of Pharmacology and Experimental Therapeutics November 1, 1999, 291 (2) 785-792;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • CRV431 Decreases Liver Fibrosis and Tumor Development
  • Powerful Activation of Skeletal Muscle Actomyosin ATPase by Goniodomin A Is Highly Sensitive to Troponin/Tropomyosin Complex
  • Is Hydroxylamine-Induced Cytotoxicity a Valid Marker for Hypersensitivity Reactions to Sulfamethoxazole in Human Immunodeficiency Virus-Infected Individuals?
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics