Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleArticle

Behavioral Effects of Cocaine: Interactions with D1 Dopaminergic Antagonists and Agonists in Mice and Squirrel Monkeys

Jonathan L. Katz, Theresa A. Kopajtic, Krista A. Myers, Robert J. Mitkus and Michael Chider
Journal of Pharmacology and Experimental Therapeutics October 1999, 291 (1) 265-279;
Jonathan L. Katz
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Theresa A. Kopajtic
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Krista A. Myers
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Robert J. Mitkus
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Michael Chider
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The present study compared interactions among dopamine D1-like agonists and partial agonists with cocaine on the locomotor stimulant effects of cocaine, as well as the discriminative-stimulus effects of cocaine, and effects of cocaine on rates of responding. Cocaine alone produced a dose-related stimulation of locomotor activity in Swiss-Webster mice and a dose-related increase in the proportion of responses on the cocaine-appropriate response key in squirrel monkeys (Saimiri sciureus) trained to discriminate cocaine (0.3 mg/kg i.m.) from saline. None of the D1 dopaminergic agents fully reproduced these effects, with SKF 77434 producing marginal stimulation of locomotor activity and SCH 23390, SCH 39166, and SKF 77434 producing some, although incomplete substitution for cocaine in monkeys discriminating cocaine. The D1 dopamine antagonists SCH 23390, SCH 39166, and A-69024 dose-dependently shifted the cocaine dose-effect curve for locomotor activity to the right and decreased the efficacy of cocaine. The same compounds shifted the discriminative-stimulus effects of cocaine to the right without altering efficacy of cocaine. In contrast to the effects on locomotor activity, the maximal shift to the right in the discriminative-stimulus effects of cocaine was ∼3-fold, with higher doses of the antagonists producing no greater shifts in the cocaine dose-effect curve than with intermediate doses. The partial D1 agonists (±)-SKF 38393, (+)-SKF 38393, and SKF 77434 also dose-dependently shifted the dose-effect curve for locomotor stimulant effects to the right and decreased the maximal effect of cocaine. These compounds only shifted the discriminative-stimulus effects of cocaine to a 2-fold maximum. In general, cocaine effects on rates of responding in the subjects discriminating cocaine from saline were only minimally antagonized by coadministration of the D1 dopaminergic agents. Both potency for producing behavioral effects alone and in antagonizing the effects of cocaine were related to binding affinities assessed by displacement of [3H]SCH 23390 from rat striatum. These results suggest that actions mediated by D1-like receptors contribute to the behavioral effects of cocaine. However, the various limitations to the degree of antagonism accomplished indicate that D1-like dopaminergic actions appear to be more involved in the effects of cocaine on locomotor activity, relatively less involved in the discriminative-stimulus effects of cocaine, and least involved in the effects of cocaine on operant response rates. This differential involvement of D1 dopamine receptors in these various behavioral effects of cocaine suggests problems in predicting clinical efficacy of at least D1 receptor antagonists as potential treatments for cocaine abuse. Additional studies are necessary to determine whether the antagonism of cocaine can predict therapeutic efficacy at all, and, if so, which effects when antagonized are the best predictors.

Footnotes

  • Send reprint requests to: J. L. Katz, Ph.D., Psychobiology Section, NIDA Addiction Research Center, P.O. Box 5180, Baltimore, MD 21224.

  • ↵1 K.A.M. was supported by the Woodlawn High School Magnet Program, Bryan G. Stoll, Associate Coordinator, 1801 Woodlawn Dr., Baltimore, MD 21207.

  • Abbreviations:
    FR
    fixed-ratio
    5-HT
    5-hydroxytryptamine
    • Received January 11, 1999.
    • Accepted June 3, 1999.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 291 (1)
Journal of Pharmacology and Experimental Therapeutics
Vol. 291, Issue 1
1 Oct 1999
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Behavioral Effects of Cocaine: Interactions with D1 Dopaminergic Antagonists and Agonists in Mice and Squirrel Monkeys
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Behavioral Effects of Cocaine: Interactions with D1 Dopaminergic Antagonists and Agonists in Mice and Squirrel Monkeys

Jonathan L. Katz, Theresa A. Kopajtic, Krista A. Myers, Robert J. Mitkus and Michael Chider
Journal of Pharmacology and Experimental Therapeutics October 1, 1999, 291 (1) 265-279;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Behavioral Effects of Cocaine: Interactions with D1 Dopaminergic Antagonists and Agonists in Mice and Squirrel Monkeys

Jonathan L. Katz, Theresa A. Kopajtic, Krista A. Myers, Robert J. Mitkus and Michael Chider
Journal of Pharmacology and Experimental Therapeutics October 1, 1999, 291 (1) 265-279;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • CRV431 Decreases Liver Fibrosis and Tumor Development
  • Mechanisms of 5-Hydroxytryptamine2A Receptor Activation of the Mitogen-Activated Protein Kinase Pathway in Vascular Smooth Muscle
  • Interactive Role for Neurosteroids in Ethanol Enhancement of γ-Aminobutyric Acid-Gated Currents from Dissociated Substantia Nigra Reticulata Neurons
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics