Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • Log out
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleArticle

Catalytic Activity and Quantitation of Cytochrome P-450 2E1 in Prenatal Human Brain

Monica R. Brzezinski, Helene Boutelet-Bochan, Richard E. Person, Alan G. Fantel and Mont R. Juchau
Journal of Pharmacology and Experimental Therapeutics June 1999, 289 (3) 1648-1653;
Monica R. Brzezinski
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Helene Boutelet-Bochan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Richard E. Person
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Alan G. Fantel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mont R. Juchau
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Cytochrome P-450 2E1 (CYP2E1) is a readily inducible hemoprotein that catalyzes the oxidation of endogenous compounds and many low molecular weight xenobiotics. As the major component of the microsomal ethanol oxidizing system, it contributes significantly to ethanol metabolism and the formation of the highly reactive metabolite acetaldehyde. The leaky property of this enzyme results in the generation of reactive oxygen species that can induce oxidative stress and cytotoxic conditions deleterious to development. To further investigate the proposed role of CYP2E1 in the etiology of alcohol teratogenesis, the current study focused on the quantification of CYP2E1 in prenatal human brain, a tissue that is highly vulnerable to the damaging effects of ethanol throughout gestation. In microsomal samples prepared from pools of brain tissues, immunoreactive protein was detected by Western blot analysis using enhanced chemiluminescence, whereas functional protein was estimated with an enzymatic assay usingp-nitrophenol and an electrochemical detection system. CYP2E1 transcript was consistently detected in RNA samples prepared from individual brain tissues using the ribonuclease protection assay. Quantitative data were collected by scanning densitometry and phosphorimaging technology. There was a dramatic increase in human brain CYP2E1 content around gestational day 50 and a fairly constant level was maintained throughout the early fetal period, until at least day 113. The relatively low levels of the P-450 isoform present in conceptal brain may be sufficient to generate reactive intermediates that elicit neuroembryotoxicity following maternal alcohol consumption.

Footnotes

  • Send reprint requests to: Prof. M. R. Juchau, Ph.D., Department of Pharmacology, School of Medicine, Box 357280, University of Washington, Seattle, WA 98195. E-mail:juchau{at}u.washington.edu

  • ↵1 This work was supported by National Institute on Environmental Health Sciences Grants ES-04041, ES-07032, and ES-06361.

  • Abbreviations:
    CYP2E1
    cytochrome P-450 2E1
    FAS
    fetal alcohol syndrome
    CNS
    central nervous system
    ADH
    alcohol dehydrogenase
    MEOS
    microsomal ethanol oxidizing system
    PAGE
    polyacrylamide gel electrophoresis
    • Received October 5, 1998.
    • Accepted January 29, 1999.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 289 (3)
Journal of Pharmacology and Experimental Therapeutics
Vol. 289, Issue 3
1 Jun 1999
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Catalytic Activity and Quantitation of Cytochrome P-450 2E1 in Prenatal Human Brain
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Catalytic Activity and Quantitation of Cytochrome P-450 2E1 in Prenatal Human Brain

Monica R. Brzezinski, Helene Boutelet-Bochan, Richard E. Person, Alan G. Fantel and Mont R. Juchau
Journal of Pharmacology and Experimental Therapeutics June 1, 1999, 289 (3) 1648-1653;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Catalytic Activity and Quantitation of Cytochrome P-450 2E1 in Prenatal Human Brain

Monica R. Brzezinski, Helene Boutelet-Bochan, Richard E. Person, Alan G. Fantel and Mont R. Juchau
Journal of Pharmacology and Experimental Therapeutics June 1, 1999, 289 (3) 1648-1653;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Experimental Procedures
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • CRV431 Decreases Liver Fibrosis and Tumor Development
  • Meeting Report for the ASPET–Ray Fuller Symposium: Cellular Mechanisms and Novel Strategies for Pain Control
  • Antinociceptive Properties of Fenfluramine, a Serotonin Reuptake Inhibitor, in a Rat Model of Neuropathy
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics