Abstract
Betulinic acid (BA), a pentacyclic triterpene, is an experimental cytotoxic agent for malignant melanoma. Here, we show that BA triggers apoptosis in five human glioma cell lines. BA-induced apoptosis requires new protein, but not RNA, synthesis, is independent of p53, and results in p21 protein accumulation in the absence of a cell cycle arrest. BA-induced apoptosis involves the activation of caspases that cleave poly(ADP ribose)polymerase. Interactions of death ligand/receptor pairs of the CD95/CD95 ligand family do not mediate BA-induced caspase activation. BA enhances the levels of BAX and BCL-2 proteins but does not alter the levels of BCL-xS or BCL-xL. Ectopic expression of BCL-2 prevents BA-induced caspase activation, DNA fragmentation, and cell death. Furthermore, BA induces the formation of reactive oxygen species that are essential for BA-triggered cell death. The generation of reactive oxygen species is blocked by BCL-2 and requires new protein synthesis but is unaffected by caspase inhibitors, suggesting that BA toxicity sequentially involves new protein synthesis, formation of reactive oxygen species, and activation of crm-A-insensitive caspases.
Footnotes
- Received October 23, 1998.
- Accepted January 28, 1999.
Send reprint requests to: Michael Weller, M.D., Department of Neurology, University of Tübingen, School of Medicine, Hoppe-Seyler-Strasse 3, 72076 Tübingen, Germany. E-mail:michael.weller{at}uni.tuebingen.de
- The American Society for Pharmacology and Experimental Therapeutics
JPET articles become freely available 12 months after publication, and remain freely available for 5 years.Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page.
|