Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleArticle

Clearance of Human Brain Natriuretic Peptide in Rabbits; Effect of the Kidney, the Natriuretic Peptide Clearance Receptor, and Peptidase Activity

Ramona Almirez and Andrew A. Protter
Journal of Pharmacology and Experimental Therapeutics May 1999, 289 (2) 976-980;
Ramona Almirez
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Andrew A. Protter
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Although the synthetic version of the cardiac peptide human brain natriuretic peptide (hBNP) has demonstrated beneficial cardiovascular effects in clinical studies, little is known about mechanisms governing its elimination from the blood. This study measured the role of the kidney, the natriuretic peptide clearance (NP-C) receptor, and peptidase digestion on the elimination of synthetic hBNP from the plasma compartment of rabbits. The estimated plasma steady state resulting from a continuous i.v. infusion was achieved within 50 min and was related in a linear manner with the infusion rate of the drug. Complete restriction of kidney blood flow by bilateral suture-ligation of the renal arteries compared with sham-treated animals reduced the clearance of hBNP by approximately half (24 ± 9 ml/min versus 47 ± 14 ml/min, respectively, p < .007). Pharmacological blockade of the NP-C receptor with a clearance receptor-specific analog of atrial natriuretic peptide increased in a statistically significant and dose-related manner the plasma steady-state level of hBNP during continuous i.v. infusion of hBNP (maximum effect of 1.9 ± 0.3-fold, p < .01). The peptidase inhibitor phosphoramidon increased in a dose-related manner the plasma steady-state level of hBNP 1.7 ± 0.4-fold during continuous i.v. infusion of hBNP in rabbits. These data suggest that the kidney, the NP-C receptor, and peptidases are all important in the elimination of hBNP from the plasma compartment.

Footnotes

  • Send reprint requests to: Andrew A. Protter, 2450 Bayshore Parkway, Mountain View, CA 94043. E-mail:protter{at}sciosinc.com

  • ↵1 This work was supported by Scios Incorporated.

  • Abbreviations:
    hBNP
    human brain natriuretic peptide
    ANP
    atrial natriuretic peptide
    NP-C
    natriuretic peptide clearance
    NEP
    neutral endopeptidase
    • Received July 27, 1998.
    • Accepted January 13, 1999.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 289 (2)
Journal of Pharmacology and Experimental Therapeutics
Vol. 289, Issue 2
1 May 1999
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Clearance of Human Brain Natriuretic Peptide in Rabbits; Effect of the Kidney, the Natriuretic Peptide Clearance Receptor, and Peptidase Activity
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Clearance of Human Brain Natriuretic Peptide in Rabbits; Effect of the Kidney, the Natriuretic Peptide Clearance Receptor, and Peptidase Activity

Ramona Almirez and Andrew A. Protter
Journal of Pharmacology and Experimental Therapeutics May 1, 1999, 289 (2) 976-980;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Clearance of Human Brain Natriuretic Peptide in Rabbits; Effect of the Kidney, the Natriuretic Peptide Clearance Receptor, and Peptidase Activity

Ramona Almirez and Andrew A. Protter
Journal of Pharmacology and Experimental Therapeutics May 1, 1999, 289 (2) 976-980;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Experimental Procedures
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • PST3093 Stimulates SERCA2a and Improves Cardiac Function
  • CRV431 Decreases Liver Fibrosis and Tumor Development
  • Discriminative Stimulus Effects of Zolpidem in Squirrel Monkeys: Comparison with Conventional Benzodiazepines and Sedative-Hypnotics
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics