Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleArticle

Proteasome Inhibition Leads to Significant Reduction of Bcr-Abl Expression and Subsequent Induction of Apoptosis in K562 Human Chronic Myelogenous Leukemia Cells

Q. Ping Dou, Terence F. McGuire, Yibing Peng and Bing An
Journal of Pharmacology and Experimental Therapeutics May 1999, 289 (2) 781-790;
Q. Ping Dou
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Terence F. McGuire
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yibing Peng
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Bing An
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The chimeric oncogene bcr-abl is detected in virtually every case of chronic myelogenous leukemia. It has been shown that cells (such as K562) expressing Bcr-Abl/p210, a protein tyrosine kinase, not only undergo cellular transformation but also demonstrate multiple drug resistance. Recent studies also demonstrate that the proteasome is involved in the survival signaling pathway(s). In the current study, we tested the hypothesis that the proteasome might play a role in regulating Bcr-Abl function. We have demonstrated by using a variety of inhibitors that inhibition of the proteasome, but not of the cysteine protease, activity is able to activate the apoptotic cell death program in K562 cells. Proteasome inhibition-induced apoptosis is demonstrated by condensation and fragmentation of nuclei, appearance of an apoptotic population with sub-G1 DNA content, the internucleosomal fragmentation of DNA, and cleavage of poly(ADP-ribose) polymerase, and can be blocked by a specific caspase-3-like tetrapeptide inhibitor. Western blot analysis with specific antibodies to c-Abl and Bcr proteins show that treatment of K562 cells with a proteasome inhibitor results in significant reduction of Bcr-Abl protein expression, which occurs several hours before the onset of apoptotic execution. Levels of c-Abl/p145 and Bcr/p160 proteins, however, remain essentially unaltered at that time. Furthermore, reduced Bcr-Abl expression is reflected in significantly attenuated Bcr-Abl-mediated protein tyrosine phosphorylation. Taken together, these results indicate that proteasome inhibition is sufficient to inactivate Bcr-Abl function and subsequently activate the apoptotic death program in cells that are resistant to apoptosis induced by chemotherapy.

Footnotes

  • Send reprint requests to: Q. Ping Dou, Ph.D., Drug Discovery Program, H. Lee Moffitt Cancer Center and Research Institute, Department of Biochemistry and Molecular Biology, College of Medicine, University of South Florida, 12902 Magnolia Dr., Tampa, FL 33612-9497. E-mail: douqp{at}moffitt.usf.edu

  • ↵1 This work was supported in part by research funds from the Department of Pharmacology, University of Pittsburgh School of Medicine (to Q.P.D.), H. Lee Moffitt Cancer Center and Research Institute (to Q.P.D.), and the University of Pittsburgh Cancer Institute (to T.F.M.).

  • Abbreviations:
    PARP
    poly(ADP-ribose) polymerase
    CML
    chronic myelogenous leukemia
    LLnV
    N-carbobenzoxy-l-leucyl-l-leucyl-norvalinal
    LLnL
    N-acetyl-l-leucyl-l-leucyl-norleucinal
    LLL
    N-carbobenzoxy-l-leucyl-l-leucyl-l-leucinal
    LLM
    N-acetyl-l-leucyl-l-leucyl-l-methioninal
    VP-16
    etoposide
    E-64d
    (2S,3S)-trans-epoxysuccinyl-L-leucylamido-3-methyl-butane ethyl ester
    DMSO
    dimethyl sulfoxide
    DEVD-FMK
    acetyl-DEVD-fluoromethyl ketone
    • Received August 5, 1998.
    • Accepted December 8, 1998.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 289 (2)
Journal of Pharmacology and Experimental Therapeutics
Vol. 289, Issue 2
1 May 1999
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Proteasome Inhibition Leads to Significant Reduction of Bcr-Abl Expression and Subsequent Induction of Apoptosis in K562 Human Chronic Myelogenous Leukemia Cells
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Proteasome Inhibition Leads to Significant Reduction of Bcr-Abl Expression and Subsequent Induction of Apoptosis in K562 Human Chronic Myelogenous Leukemia Cells

Q. Ping Dou, Terence F. McGuire, Yibing Peng and Bing An
Journal of Pharmacology and Experimental Therapeutics May 1, 1999, 289 (2) 781-790;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Research ArticleArticle

Proteasome Inhibition Leads to Significant Reduction of Bcr-Abl Expression and Subsequent Induction of Apoptosis in K562 Human Chronic Myelogenous Leukemia Cells

Q. Ping Dou, Terence F. McGuire, Yibing Peng and Bing An
Journal of Pharmacology and Experimental Therapeutics May 1, 1999, 289 (2) 781-790;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Experimental Procedures
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • CRV431 Decreases Liver Fibrosis and Tumor Development
  • Antagonism of Immunostimulatory CpG-Oligodeoxynucleotides by 4-Aminoquinolines and Other Weak Bases: Mechanistic Studies
  • Pharmacodynamics of Immunosuppression by Mycophenolic Acid: Inhibition of Both Lymphocyte Proliferation and Activation Correlates with Pharmacokinetics
Show more Article

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics