Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleArticle

Novel Membrane Transporter OCTN1 Mediates Multispecific, Bidirectional, and pH-Dependent Transport of Organic Cations

Hikaru Yabuuchi, Ikumi Tamai, Jun-Ichi Nezu, Kazuki Sakamoto, Asuka Oku, Miyuki Shimane, Yoshimichi Sai and Akira Tsuji
Journal of Pharmacology and Experimental Therapeutics May 1999, 289 (2) 768-773;
Hikaru Yabuuchi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ikumi Tamai
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jun-Ichi Nezu
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kazuki Sakamoto
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Asuka Oku
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Miyuki Shimane
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yoshimichi Sai
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Akira Tsuji
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

In the present study, functional characteristics of organic cation transporter (OCTN)1, which was cloned as the pH-dependent tetraethylammonium (TEA) transporter when expressed in mammalian human embryonic kidney (HEK)293 cells, were further investigated usingXenopus oocytes as well as HEK293 cells as gene expression systems. When OCTN1-derived complementary RNA was injected into Xenopus oocytes, pH-dependent transport of [14C]TEA was observed as the same in HEK293 cells. In contrast, a replacement of sodium ions with potassium ions in the surrounding medium did not cause any change in [14C]TEA uptake in Xenopus oocytes expressed with OCTN1. In addition, when OCTN1 was expressed in HEK293 cells, efflux of TEA from the cells was pH dependent, with an accelerated rate at acidic external medium pH. Accordingly, membrane potential or sodium ions are suggested to have no influence on [14C]TEA transport and the transport activity of OCTN1 is directly affected by pH itself. Furthermore, addition of the unlabeled TEA in external medium enhanced the efflux of preloaded [14C]TEA. These observations suggest that OCTN1 is a pH-dependent and bidirectional TEA transporter. OCTN1-mediated [14C]TEA uptake was inhibited by various organic cations such as cimetidine, procainamide, pyrilamine, quinidine, quinine, and verapamil. In addition, uptakes of cationic compounds such as [3H]pyrilamine, [3H]quinidine, and [3H]verapamil and zwitterionic l-[3H]carnitine were increased by expression of OCTN1 in Xenopus oocytes. Accordingly, OCTN1 was functionally demonstrated to be a multispecific and pH-dependent organic cation transporter, which presumably functions as a proton/organic cation antiporter at the renal apical membrane and other tissues.

Footnotes

  • Send reprint requests to: Prof. Akira Tsuji, Department of Pharmacobio-Dynamics, Faculty of Pharmaceutical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa 920-0934, Japan. E-mail:tsuji{at}kenroku.kanazawa-u.ac.jp

  • ↵1 This research was supported in part by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports and Culture.

  • Abbreviations:
    TEA
    tetraethylammonium
    NMN
    N 1-methylnicotinamide
    • Received September 14, 1998.
    • Accepted December 29, 1998.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 289 (2)
Journal of Pharmacology and Experimental Therapeutics
Vol. 289, Issue 2
1 May 1999
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Novel Membrane Transporter OCTN1 Mediates Multispecific, Bidirectional, and pH-Dependent Transport of Organic Cations
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Novel Membrane Transporter OCTN1 Mediates Multispecific, Bidirectional, and pH-Dependent Transport of Organic Cations

Hikaru Yabuuchi, Ikumi Tamai, Jun-Ichi Nezu, Kazuki Sakamoto, Asuka Oku, Miyuki Shimane, Yoshimichi Sai and Akira Tsuji
Journal of Pharmacology and Experimental Therapeutics May 1, 1999, 289 (2) 768-773;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Research ArticleArticle

Novel Membrane Transporter OCTN1 Mediates Multispecific, Bidirectional, and pH-Dependent Transport of Organic Cations

Hikaru Yabuuchi, Ikumi Tamai, Jun-Ichi Nezu, Kazuki Sakamoto, Asuka Oku, Miyuki Shimane, Yoshimichi Sai and Akira Tsuji
Journal of Pharmacology and Experimental Therapeutics May 1, 1999, 289 (2) 768-773;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Experimental Procedures
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • CRV431 Decreases Liver Fibrosis and Tumor Development
  • Antagonism of Immunostimulatory CpG-Oligodeoxynucleotides by 4-Aminoquinolines and Other Weak Bases: Mechanistic Studies
  • Pharmacodynamics of Immunosuppression by Mycophenolic Acid: Inhibition of Both Lymphocyte Proliferation and Activation Correlates with Pharmacokinetics
Show more Article

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics