Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleArticle

A Role for N-Arachidonylethanolamine (Anandamide) as the Mediator of Sensory Nerve-Dependent Ca2+-Induced Relaxation

Norio Ishioka and Richard D. Bukoski
Journal of Pharmacology and Experimental Therapeutics April 1999, 289 (1) 245-250;
Norio Ishioka
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Richard D. Bukoski
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

We tested the hypothesis that an endogenous cannabinoid (CB) receptor agonist, such as N-arachidonylethanolamine (anandamide), is the transmitter that mediates perivascular sensory nerve-dependent Ca2+-induced relaxation. Rat mesenteric branch arteries were studied using wire myography; relaxation was determined after inducing contraction with norepinephrine. Cumulative addition of Ca2+ caused dose-dependent relaxation (ED50 = 2.2 ± 0.09 mM). The relaxation was inhibited by 10 mM TEA and 100 nM iberiotoxin, a blocker of large conductance Ca2+-activated K+ channels, but not by 5 μM glibenclamide, 1 mM 4-aminopyridine, or 30 nM apamin. Ca2+-induced relaxation was also blocked by the selective CB receptor antagonist SR141716A and was enhanced by pretreatment with 4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride (pefabloc; 30 μM), an inhibitor of anandamide metabolism. Anandamide also caused dose-dependent relaxation (ED50 = .72 ± 0.3 μM). The relaxation was not inhibited by endothelial denudation, 10 μM indomethacin, or 1 μM miconazole, but was blocked by 3 μM SR141716A, 10 mM TEA, precontraction with 100 mM K+, and 100 nM iberiotoxin, and was enhanced by treatment with 30 μM pefabloc. Mesenteric branch arteries were 200-fold more sensitive to the relaxing action of anandamide than arachidonic acid (ED50 = 160 ± 7 μM). These data show that: 1) Ca2+ and anandamide cause hyperpolarization-mediated relaxation of mesenteric branch arteries, which is dependent on an iberiotoxin-sensitive Ca2+-activated K+channel, 2) relaxation induced by both Ca2+ and anandamide is inhibited by CB receptor blockade, and 3) relaxation induced by anandamide is not dependent on its breakdown to arachidonic acid and subsequent metabolism. These findings support the hypothesis that anandamide, or a similar cannabinoid receptor agonist, mediates nerve-dependent Ca2+-induced relaxation in the rat.

Footnotes

  • Send reprint requests to: Richard Bukoski, Ph.D., Section of Hypertension and Vascular Research, 8.104 Medical Research Building, University of Texas Medical Branch, Galveston, TX 77555-1065. E-mail:rbukoski{at}utmb.edu

  • ↵1 This work was supported by National Institutes of Health Grant HL54901 and the John Sealy Memorial Research Foundation.

  • Abbreviations:
    CaR
    receptor for extracellular Ca2+
    CB
    cannabinoid
    4-AP
    4-aminopyridine
    CB1
    type 1 cannabinoid receptor
    CB2
    type 2 cannabinoid receptor
    CGRP
    calcitonin gene-related peptide
    KCa
    Ca2+-activated K+
    NAE
    N-acylethanolamine
    SNP
    sodium nitroprusside
    • Received July 29, 1998.
    • Accepted November 21, 1998.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 289 (1)
Journal of Pharmacology and Experimental Therapeutics
Vol. 289, Issue 1
1 Apr 1999
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
A Role for N-Arachidonylethanolamine (Anandamide) as the Mediator of Sensory Nerve-Dependent Ca2+-Induced Relaxation
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

A Role for N-Arachidonylethanolamine (Anandamide) as the Mediator of Sensory Nerve-Dependent Ca2+-Induced Relaxation

Norio Ishioka and Richard D. Bukoski
Journal of Pharmacology and Experimental Therapeutics April 1, 1999, 289 (1) 245-250;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Research ArticleArticle

A Role for N-Arachidonylethanolamine (Anandamide) as the Mediator of Sensory Nerve-Dependent Ca2+-Induced Relaxation

Norio Ishioka and Richard D. Bukoski
Journal of Pharmacology and Experimental Therapeutics April 1, 1999, 289 (1) 245-250;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Experimental Procedures
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • CRV431 Decreases Liver Fibrosis and Tumor Development
  • Evidence That Melanocortin 4 Receptor Mediates Hemorrhagic Shock Reversal Caused by Melanocortin Peptides
  • Effects of Antidepressants and Benzodiazepine-Type Anxiolytic Agents on Hepatic Porphyrin Accumulation in Primary Cultures of Chick Embryo Liver Cells
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics