Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • Log out
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleArticle

Hepatic Disposition of the Acyl Glucuronide1-O-Gemfibrozil-β-d-Glucuronide: Effects of Dibromosulfophthalein on Membrane Transport and Aglycone Formation

Lucia Sabordo, Benedetta C. Sallustio, Allan M. Evans and Roger L. Nation
Journal of Pharmacology and Experimental Therapeutics February 1999, 288 (2) 414-420;
Lucia Sabordo
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Benedetta C. Sallustio
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Allan M. Evans
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Roger L. Nation
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The liver plays an important role in the disposition of acyl glucuronides by determining their extent of formation, biliary excretion, and efflux into blood. Thus, both intrahepatic and extrahepatic exposure to these reactive polar conjugates depends on the efficiency of hepatic transport mechanisms, which may be shared with other nonbile acid organic anions. Using the isolated perfused rat liver preparation, the hepatic disposition of the acyl glucuronide, 1-O-gemfibrozil-β-d-glucuronide, was examined in the presence of the organic anion dibromosulfophthalein (DBSP). Using a recirculating system, livers were perfused for 90 min with an erythrocyte-free perfusion medium containing 1% (w/v) albumin and 1-O-gemfibrozil-β-d-glucuronide (3 μM) alone (n = 6) or with DBSP (200 μM,n = 7). The glucuronide was avidly taken up by the liver, excreted into bile, and hydrolyzed within the liver to its aglycone, gemfibrozil. DBSP significantly (P < .05) lowered the conjugate’s mean hepatic clearance (8.98–5.17 ml/min), intrinsic clearance (44.0–17.7 ml/min), and fraction eliminated in bile (72.8–48.7% of the dose), while increasing perfusate gemfibrozil concentrations (0.52–0.92 μM at 90 min). Furthermore, DBSP significantly (P < .05) lowered the ratio of intrahepatic to unbound perfusate concentrations of 1-O-gemfibrozil-β-d-glucuronide (139.0–35.0) and showed a trend to lower the ratio of bile to intrahepatic concentrations (111.3–76.2, P = .05). Thus, the study demonstrated that DBSP inhibited both the sinusoidal uptake and canalicular transport of 1-O-gemfibrozil-β-d-glucuronide, suggesting that the hepatic membrane transport of acyl glucuronides is carrier mediated and shared with other organic anions.

Footnotes

  • Send reprint requests to: Dr. B.C. Sallustio, Department of Clinical Pharmacology, The Queen Elizabeth Hospital, 28 Woodville Rd. Woodville South 5011, South Australia.

  • ↵1 This study was supported in part by a University of South Australia Internal Research Development Grant and a National Health and Medical Research Foundation Grant. L.S. is funded by a Queen Elizabeth Hospital Postgraduate Research Scholarship.

  • Abbreviations:
    Agg(0–90)
    amount excreted in bile over 90 min
    AUC(0-∞)
    area under the perfusate concentration versus time curve from 0 to infinity
    AUC(0–90)
    area under the perfusate concentration versus time curve from 0 to 90 min
    Bgg
    fraction cleared unchanged by biliary excretion
    BSP
    bromosulfophthalein
    CL
    total clearance
    CLint
    intrinsic clearance
    D
    dose
    DBSP
    dibromosulfophthalein
    DNP-SG
    S-(2,4-dinitrophenyl)-glutathione
    fu
    fraction unbound in perfusate
    GG
    1-O-gemfibrozil-β-d-glucuronide
    • Received March 6, 1998.
    • Accepted August 7, 1998.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics: 288 (2)
Journal of Pharmacology and Experimental Therapeutics
Vol. 288, Issue 2
1 Feb 1999
  • Table of Contents
  • About the Cover
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Hepatic Disposition of the Acyl Glucuronide1-O-Gemfibrozil-β-d-Glucuronide: Effects of Dibromosulfophthalein on Membrane Transport and Aglycone Formation
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Hepatic Disposition of the Acyl Glucuronide1-O-Gemfibrozil-β-d-Glucuronide: Effects of Dibromosulfophthalein on Membrane Transport and Aglycone Formation

Lucia Sabordo, Benedetta C. Sallustio, Allan M. Evans and Roger L. Nation
Journal of Pharmacology and Experimental Therapeutics February 1, 1999, 288 (2) 414-420;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Research ArticleArticle

Hepatic Disposition of the Acyl Glucuronide1-O-Gemfibrozil-β-d-Glucuronide: Effects of Dibromosulfophthalein on Membrane Transport and Aglycone Formation

Lucia Sabordo, Benedetta C. Sallustio, Allan M. Evans and Roger L. Nation
Journal of Pharmacology and Experimental Therapeutics February 1, 1999, 288 (2) 414-420;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Experimental Procedures
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • CRV431 Decreases Liver Fibrosis and Tumor Development
  • Differential Effects of Mibefradil, Verapamil, and Amlodipine on Myocardial Function and Intracellular Ca2+ Handling in Rats with Chronic Myocardial Infarction
  • Activation of G Proteins by Neuropeptide Y and γ-Aminobutyric AcidB Receptor Agonists in Rat Cerebral Cortical Membranes through Distinct Modes of Action
Show more Article

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics