Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • Log out
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleArticle

Functional Characteristics and Membrane Localization of Rat Multispecific Organic Cation Transporters, OCT1 and OCT2, Mediating Tubular Secretion of Cationic Drugs

Yumiko Urakami, Masahiro Okuda, Satohiro Masuda, Hideyuki Saito and Ken-Ichi Inui
Journal of Pharmacology and Experimental Therapeutics November 1998, 287 (2) 800-805;
Yumiko Urakami
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Masahiro Okuda
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Satohiro Masuda
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hideyuki Saito
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ken-Ichi Inui
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

We have isolated a kidney-specific organic cation transporter, rat OCT2, which is distinct from rat OCT1 (Okuda M, Saito H, Urakami Y, Takano M and Inui K (1996) Biochem Biophys Res Commun224:500–507). In our study, the functional characteristics and membrane localization of OCT1 and OCT2 were investigated by uptake studies using MDCK cells transfected with rat OCT1 or OCT2 cDNA (MDCK-OCT1 or MDCK-OCT2) and immunological studies. Tetraethylammonium (TEA) uptake by both MDCK-OCT1 and MDCK-OCT2 cells was markedly elevated when TEA was added to the basolateral medium, but not to the apical medium. Efflux of TEA from MDCK-OCT1 and MDCK-OCT2 cells was not changed by extracellular pH from 5.4 to 8.4, whereas TEA uptake by both transfectants was decreased by acidification of extracellular medium. Apparent Km values for TEA uptake by MDCK-OCT1 and MDCK-OCT2 cells were 38 and 45 μM, respectively. Although various hydrophilic organic cations such as 1-methyl-4-phenylpyridinium, cimetidine, quinidine, nicotine, N1-methylnicotinamide and guanidine markedly inhibited TEA uptake by both MDCK-OCT1 and MDCK-OCT2 cells, there were no significant differences in the apparent inhibition constants (Ki ) against these organic cations between both transfectants. Furthermore, immunological studies using a polyclonal antibody against OCT1 revealed that OCT1 was expressed in the basolateral membranes but not in the brush-border membranes of the rat kidney. These results suggested that both OCT1 and OCT2 are basolateral-type organic cation transporters with broad substrate specificities, mediating tubular secretion of cationic drugs.

Footnotes

  • Send reprint requests to: Professor Ken-ichi Inui, Department of Pharmacy, Kyoto University Hospital, Sakyo-ku, Kyoto 606-8507, Japan.

  • ↵1 This work was supported by a Grant-in-Aid for Scientific Research (B) and a Grant-in-Aid for Scientific Research on Priority Areas of “Channel-Transporter Correlation” from the Ministry of Education, Science, and Culture of Japan, and by Grants-in-Aid from the Yamada Science Foundation.

  • Abbreviations:
    RT-PCR
    reverse-transcription-polymerase chain reaction
    Tris
    2-amino-2-hydroxymethyl-1,3-propanediol
    MES
    2-(N-morpholino)ethanesulfonic acid
    HEPES
    2-[4-(2-hydroxyethyl)-1-piperazinyl]ethanesulfonic acid
    SDS-PAGE
    sodium dodecyl sulfate-polyacrylamide gel electrophoresis
    • Received February 12, 1998.
    • Accepted June 16, 1998.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics
Vol. 287, Issue 2
1 Nov 1998
  • Table of Contents
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Functional Characteristics and Membrane Localization of Rat Multispecific Organic Cation Transporters, OCT1 and OCT2, Mediating Tubular Secretion of Cationic Drugs
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Functional Characteristics and Membrane Localization of Rat Multispecific Organic Cation Transporters, OCT1 and OCT2, Mediating Tubular Secretion of Cationic Drugs

Yumiko Urakami, Masahiro Okuda, Satohiro Masuda, Hideyuki Saito and Ken-Ichi Inui
Journal of Pharmacology and Experimental Therapeutics November 1, 1998, 287 (2) 800-805;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Functional Characteristics and Membrane Localization of Rat Multispecific Organic Cation Transporters, OCT1 and OCT2, Mediating Tubular Secretion of Cationic Drugs

Yumiko Urakami, Masahiro Okuda, Satohiro Masuda, Hideyuki Saito and Ken-Ichi Inui
Journal of Pharmacology and Experimental Therapeutics November 1, 1998, 287 (2) 800-805;
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • PST3093 Stimulates SERCA2a and Improves Cardiac Function
  • CRV431 Decreases Liver Fibrosis and Tumor Development
  • Toxicity, Biological Activity, and Pharmacokinetics of TXU (Anti-CD7)-Pokeweed Antiviral Protein in Chimpanzees and Adult Patients Infected with Human Immunodeficiency Virus
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics