Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleArticle

Inflammation Modifies the Role of Cyclooxygenases in the Contractile Responses of the Rat Detrusor Smooth Muscle to Kinin Agonists

Stefania Meini, Alessandro Lecci, Paola Cucchi, Rose-Marie Catalioto, Marco Criscuoli and Carlo A. Maggi
Journal of Pharmacology and Experimental Therapeutics October 1998, 287 (1) 137-143;
Stefania Meini
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Alessandro Lecci
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Paola Cucchi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Rose-Marie Catalioto
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Marco Criscuoli
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Carlo A. Maggi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The contractile responses elicited by the selective kinin B1 and B2 receptor agonists [desArg9]-bradykinin ([desArg9]-BK) and [Hyp3, Tyr(Me)8]-bradykinin ([Hyp3, Tyr(Me)8]-BK) (1 nM–10 μM), respectively, were evaluated in control vs. inflamed (cyclophosphamide 150 mg kg−1 i.p., 48 h before the sacrifice) rat isolated urinary bladder strips. The contractile responses to the B2 receptor agonist did not differ in control vs. inflamed bladders, whereas the contractile responses to [desArg9]-BK were potentiated in inflamed bladders. The selective B1 and B2 receptor antagonists B 9858 (H-Lys-Lys-Arg-Pro-Hyp-Gly-Igl-Ser-DIgl-Oic-OH) and Hoe 140 (H-DArg-Arg-Pro-Hyp-Gly-Thi-Ser-DTic-Oic-Arg-OH), both at 1 μM, inhibited the response to the B1 and B2receptor agonists, respectively, in both control and inflamed bladders. In addition, the concentration-response curve to [Hyp3, Tyr(Me)8]-BK was shifted to the right and depressed by B 9858 in inflamed bladders. The nonselective cyclooxygenase (COX) inhibitors S-(−)-ketoprofen (10 μM) and piroxicam (30 μM) markedly depressed the concentration-response curves to [desArg9]-BK and [Hyp3, Tyr(Me)8]-BK in control bladders, but neither drug affected the B1 or B2 receptor agonist-mediated responses in inflamed bladders. The selective inhibitor of the inducible COX-2 isoenzyme, NS-398 (1 μM), did not inhibit the contractile responses to [desArg9]-BK and [Hyp3, Tyr(Me)8]-BK in either control or inflamed bladders, whereas it significantly potentiated the response to the B1 receptor agonist in inflamed bladders. The exogenous administration of prostaglandin E2 (PGE2) induced S-(−)-ketoprofen-resistant contractile responses that were depressed in inflamed bladders. Pretreatment with S-(−)-ketoprofen restored the PGE2-mediated contractile responses of inflamed bladders to control values. PGE2 assay revealed that the basal production of PGE2 is significantly higher after inflammation than in control conditions. [desArg9]-BK and [Hyp3, Tyr(Me)8]-BK (1 μM each) both stimulated PGE2 production, and their effect was larger in inflamed than in control bladders. Piroxicam (30 μM) prevented the PGE2 production evoked by [desArg9]-BK in both control and inflamed bladders and likewise abolished that produced by [Hyp3, Tyr(Me)8]-BK. NS-398 (1 μM) reduced the PGE2 production elicited by [desArg9]-BK in control and inflamed bladders. When NS-398 was tested on the [Hyp3, Tyr(Me)8]-BK-induced PGE2 production, it inhibited PGE2 production in the inflamed bladders only, without significantly modifying the response obtained in controls. These findings demonstrate that 1) in normal bladders, the activation of B1 and B2 receptors evokes contraction that is largely mediated by COX-1 metabolites, whereas the COX-2 appears to be involved in PGE2 production after the activation of B1 receptor only, without interfering with contraction, and 2) in inflamed bladders, the activation of B1 and B2 receptors still produce PGE2, but the contractile response is not reduced by COX inhibitors, a result that indicates that additional mechanisms play a compensatory role.

Footnotes

  • Send reprint requests to: Stefania Meini, Pharmacology Department, Menarini Ricerche S.p.A., via Rismondo 12A, 50131, Florence, Italy.

  • Abbreviations:
    BK
    bradykinin
    [desArg9]-BK
    [desArg9]-bradykinin
    [Hyp3
    Tyr(Me)8]-BK, [Hyp3, Tyr(Me)8]-bradykinin
    B 9858
    H-Lys-Lys-Arg-Pro-Hyp-Gly-Igl-Ser-DIgl-Oic-OH
    Hoe 140
    H-DArg-Arg-Pro-Hyp-Gly-Thi-Ser-DTic-Oic-Arg-OH
    COX
    cyclooxygenase
    • Received January 9, 1998.
    • Accepted May 21, 1998.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics
Vol. 287, Issue 1
1 Oct 1998
  • Table of Contents
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Inflammation Modifies the Role of Cyclooxygenases in the Contractile Responses of the Rat Detrusor Smooth Muscle to Kinin Agonists
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Inflammation Modifies the Role of Cyclooxygenases in the Contractile Responses of the Rat Detrusor Smooth Muscle to Kinin Agonists

Stefania Meini, Alessandro Lecci, Paola Cucchi, Rose-Marie Catalioto, Marco Criscuoli and Carlo A. Maggi
Journal of Pharmacology and Experimental Therapeutics October 1, 1998, 287 (1) 137-143;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Inflammation Modifies the Role of Cyclooxygenases in the Contractile Responses of the Rat Detrusor Smooth Muscle to Kinin Agonists

Stefania Meini, Alessandro Lecci, Paola Cucchi, Rose-Marie Catalioto, Marco Criscuoli and Carlo A. Maggi
Journal of Pharmacology and Experimental Therapeutics October 1, 1998, 287 (1) 137-143;
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • PST3093 Stimulates SERCA2a and Improves Cardiac Function
  • CRV431 Decreases Liver Fibrosis and Tumor Development
  • Is Hydroxylamine-Induced Cytotoxicity a Valid Marker for Hypersensitivity Reactions to Sulfamethoxazole in Human Immunodeficiency Virus-Infected Individuals?
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics