Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleArticle

Interaction of 2′,2′-Difluorodeoxycytidine (Gemcitabine) and Formycin B with the Na+-Dependent and -Independent Nucleoside Transporters of Ehrlich Ascites Tumor Cells

Trisha Burke, Stephanie Lee, Peter J. Ferguson and James R. Hammond
Journal of Pharmacology and Experimental Therapeutics September 1998, 286 (3) 1333-1340;
Trisha Burke
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Stephanie Lee
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Peter J. Ferguson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
James R. Hammond
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The uptake of [3H]formycin B by Ehrlich ascites tumor cells was examined in both normal Na+ buffer (physiological) and nominally Na+-free buffer (iso-osmotic replacement with Li+). These studies were conducted to further characterize the equilibrative nucleoside transporter subtypes of Ehrlich cells and to assess the contribution of Na+-dependent concentrative transport mechanisms to the cellular accumulation of nucleoside analogues by these cells. Formycin B is poorly metabolized by mammalian cells and, hence, can be used as a substrate to measure transport kinetics in energetically competent cells. Initial studies established that formycin B inhibited [3H]uridine uptake by the ei (equilibrative inhibitor-insensitive) and es (equilibrative inhibitor-sensitive) transporters of Ehrlich cells withKi values of 48 ± 28 and 277 ± 25 μM, respectively. Similarly, [3H]formycin B hadKm values of 111 ± 52 and 635 ± 147 μM for uptake by the ei and es transporters, respectively. When assays were conducted in the presence of Na+, plus 100 nM nitrobenzylthioinosine to prevent efflux via the es transporters, the intracellular concentration of [3H]formycin B exceeded the initial medium concentration by more than 3-fold, indicating the activity of a Na+-dependent transporter. Interestingly, the initial rate of uptake of [3H]formycin B was significantly higher in the Li+ buffer (es-mediated Vmax = 65 ± 10 pmol/μl · sec) than in the Na+buffer (Vmax = 8.4 ± 0.9 pmol/μl · sec); this may reflect trans-acceleration of [3H]formycin B uptake by elevated intracellular adenosine levels resulting from the low Na+ environment. This model was then used to assess the interaction of gemcitabine (2′,2′-difluorodeoxycytidine) with the equilibrative and concentrative nucleoside transporters. Gemcitabine, which has shown considerable potential for the treatment of solid tumors, was a relatively poor inhibitor of [3H]formycin B uptake via the equilibrative transporters (IC50 ∼ 400 μM). In contrast, gemcitabine was a potent inhibitor of the Na+-dependent nucleoside transporter of Ehrlich cells (IC50 = 17 ± 5 nM). These results suggest that the cellular expression/activity of Na+-dependent nucleoside transporters may be an important determinant in gemcitabine cytotoxicity and clinical efficacy.

Footnotes

  • Send reprint requests to: Dr. James R. Hammond, Department of Pharmacology and Toxicology, Medical Sciences Building, The University of Western Ontario, London, Ontario, Canada N6A 5C1.

  • ↵1 This work was supported by a grant to J.R.H. from the Medical Research Council of Canada.

  • ↵2 es = e quilibrative, inhibitor s ensitive; ei = e quilibrative, inhibitor i nsensitive; cs = c oncentrative, inhibitor s ensitive;cif = c oncentrative, inhibitor i nsensitive, f ormycin B (purine) selective;cit = c oncentrative, inhibitor i nsensitive, t hymidine (pyrimidine) selective;cib = c oncentrative, inhibitor i nsensitive, b road substrate selectivity (nomenclature according to Belt et al., 1993).

  • Abbreviations:
    NBMPR
    nitrobenzylthioinosine, nitrobenzylmercaptopurine riboside
    PBS
    phosphate-buffered saline
    ATP
    adenosine triphosphate
    • Received August 15, 1997.
    • Accepted April 27, 1998.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics
Vol. 286, Issue 3
1 Sep 1998
  • Table of Contents
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Interaction of 2′,2′-Difluorodeoxycytidine (Gemcitabine) and Formycin B with the Na+-Dependent and -Independent Nucleoside Transporters of Ehrlich Ascites Tumor Cells
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Interaction of 2′,2′-Difluorodeoxycytidine (Gemcitabine) and Formycin B with the Na+-Dependent and -Independent Nucleoside Transporters of Ehrlich Ascites Tumor Cells

Trisha Burke, Stephanie Lee, Peter J. Ferguson and James R. Hammond
Journal of Pharmacology and Experimental Therapeutics September 1, 1998, 286 (3) 1333-1340;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Interaction of 2′,2′-Difluorodeoxycytidine (Gemcitabine) and Formycin B with the Na+-Dependent and -Independent Nucleoside Transporters of Ehrlich Ascites Tumor Cells

Trisha Burke, Stephanie Lee, Peter J. Ferguson and James R. Hammond
Journal of Pharmacology and Experimental Therapeutics September 1, 1998, 286 (3) 1333-1340;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • PST3093 Stimulates SERCA2a and Improves Cardiac Function
  • CRV431 Decreases Liver Fibrosis and Tumor Development
  • Antagonism of Immunostimulatory CpG-Oligodeoxynucleotides by 4-Aminoquinolines and Other Weak Bases: Mechanistic Studies
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics