Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleArticle

Protean Effects of a Natural Peptide Agonist of the G Protein-Coupled Secretin Receptor Demonstrated by Receptor Mutagenesis

Subhas C. Ganguli, Chan-Guk Park, Martin H. Holtmann, Elizabeth M. Hadac, Terry P. Kenakin and Laurence J. Miller
Journal of Pharmacology and Experimental Therapeutics August 1998, 286 (2) 593-598;
Subhas C. Ganguli
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Chan-Guk Park
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Martin H. Holtmann
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Elizabeth M. Hadac
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Terry P. Kenakin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Laurence J. Miller
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

G protein-coupled receptors initiate signaling cascades after associating with heterotrimeric G proteins. This is typically initiated by agonist binding, but can also occur spontaneously, particularly in receptors bearing distinct missense mutations. Two such mutations in the parathyroid hormone receptor are associated with constitutive activity, manifesting clinically as Jansen’s metaphyseal chondroplasia. We introduce analogous mutations separately and together into the secretin receptor to explore their impact on another family member. Constructs were expressed transiently in COS cells, and had binding and signaling (cAMP generation) studied. Each construct was processed appropriately to lead to cell surface expression and signaling. Secretin bound to the wild-type receptor with two affinity states recognized, 1% of sites in the high affinity state (Ki = 0.5 ± 0.1 nM) and 99% in the low affinity state (Ki = 23 ± 3 nM). Mutant receptor binding best fit a single affinity state, having values for Ki of 5 ± 1 nM (H156R), 8 ± 1 nM (T322P) and 6 ± 1 nM (H156R/T322P), with each of these demonstrating a shift to higher affinity than the predominent low affinity state of the wild-type receptor. Each mutant receptor expressed small to moderate constitutive activity, with basal levels of cAMP activity greater than control (P < .01): H156R, 1.4-fold; T322P, 4.5-fold and H156R/T322P, 6.8-fold. The level of basal activity of even the most active construct was only 15% of the maximal response of wild-type receptor. Although each of the single site mutants responded to secretin by increasing their cAMP levels in a concentration-dependent manner, the dual mutant decreased its cAMP in response to hormone (EC50 = 13 nM). Thus, a natural agonist had become an inverse agonist at this unique construct. Because this could reflect reduced normal coupling with Gs or increased aberrant coupling with Gi, the mechanism was further explored using pertussis toxin and a stable analogue of GTP. Although ligand-binding determinants were retained in the dual receptor mutant, the conformation of this receptor upon secretin binding effected a reduction in its basal coupling with Gs, thereby resulting in inverse agonism.

Footnotes

  • Send reprint requests to: Dr. Laurence J. Miller, Center for Basic Research in Digestive Diseases, Guggenheim 17, Mayo Clinic, Rochester, MN 55905.

  • ↵1 This work was supported by Grant DK46577 from the National Institutes of Health and the Fiterman Foundation as well as a training award from Studienstiftung des dt. Volkes

  • Abbreviations:
    G protein
    guanine nucleotide-binding protein
    PCR
    polymerase chain reaction
    KRH
    Krebs-Ringers-HEPES
    DMEM
    Dulbecco’s modified Eagle’s medium
    • Received January 12, 1998.
    • Accepted April 3, 1998.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics
Vol. 286, Issue 2
1 Aug 1998
  • Table of Contents
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Protean Effects of a Natural Peptide Agonist of the G Protein-Coupled Secretin Receptor Demonstrated by Receptor Mutagenesis
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Protean Effects of a Natural Peptide Agonist of the G Protein-Coupled Secretin Receptor Demonstrated by Receptor Mutagenesis

Subhas C. Ganguli, Chan-Guk Park, Martin H. Holtmann, Elizabeth M. Hadac, Terry P. Kenakin and Laurence J. Miller
Journal of Pharmacology and Experimental Therapeutics August 1, 1998, 286 (2) 593-598;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

Protean Effects of a Natural Peptide Agonist of the G Protein-Coupled Secretin Receptor Demonstrated by Receptor Mutagenesis

Subhas C. Ganguli, Chan-Guk Park, Martin H. Holtmann, Elizabeth M. Hadac, Terry P. Kenakin and Laurence J. Miller
Journal of Pharmacology and Experimental Therapeutics August 1, 1998, 286 (2) 593-598;
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • PST3093 Stimulates SERCA2a and Improves Cardiac Function
  • CRV431 Decreases Liver Fibrosis and Tumor Development
  • Tissue Selectivity of Antidiabetic Agent Nateglinide: Study on Cardiovascular and β-Cell KATP Channels
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics