Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleArticle

Effects of Nitric Oxide in Cultured Prevertebral Sympathetic Ganglion Neurons

K. N. Browning, Z. L. Zheng, D. L. Kreulen and R. A. Travagli
Journal of Pharmacology and Experimental Therapeutics August 1998, 286 (2) 1086-1093;
K. N. Browning
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Z. L. Zheng
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D. L. Kreulen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R. A. Travagli
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The effects of the nitric oxide donor, S-nitrosoacetylpenicillamine (SNAP), were tested on cultured dissociated guinea pig celiac ganglion neurons using whole cell patch-clamp recordings. S-nitrosoacetylpenicillamine induced a concentration- and voltage-dependent inwardly directed shift in holding current (inward current shift) in 89% of neurons. The inward current shift was prevented by pre-treatment with the nitric oxide scavenger reduced hemoglobin and was abolished by intra- or extracellular cesium. The amplitude of the inward current shift was also sensitive to the extracellular potassium concentration. The S-nitrosoacetylpenicillamine-induced inward current shift was mediated by a decrease in calcium-dependent potassium currents (IAHPs); apamin (100 nM), charybdotoxin (10 nM) or tetraethylammonium (5 mM) reduced but did not abolish the amplitude of its inward current shift and a combination of apamin and tetraethylammonium abolished the S-nitrosoacetylpenicillamine-induced inward current response. In the presence of extracellular cobalt, SNAP produced an outward current that was concentration- and voltage-dependent, abolished by reduced hemoglobin and extracellular cesium and reduced by 4-AP (1 mM); in the absence of cobalt, 4-AP increased the SNAP-induced inward current shift. These data indicate that NO exerts dual opposing effects on neuronal potassium conductances, namely an inward current shift mediated through an inhibition of IAHP and induction of an outward current mediated by activation of the potassium delayed rectifier.

Footnotes

  • Send reprint requests to: Dr. D. L. Kreulen, Department of Physiology, West Virginia University, School of Medicine, Morgantown, WV 26506-9229.

  • ↵1 This study was supported by a WVU-School of Medicine Research Grant to R.A.T., NIH HL59189 and WVU-School of Medicine Research Grants to D.L.K. and American Heart Association Grant WV-97–02-F to K.N.B.

  • ↵2 Current address: Gastroenterology Research - K7, Henry Ford Health Sciences Center, 2799 West Grand Boulevard, Detroit MI 48202.

  • Abbreviations:
    SNAP
    S-nitrosoacetylpenicillamine
    NO
    nitric oxide
    IMG
    inferior mesenteric ganglion
    CG
    celiac ganglion
    DRG
    dorsal root ganglion
    VH
    membrane holding potential
    Em
    resting membrane potential
    Rin
    membrane input resistance
    TEA
    tetraethylammonium
    4-AP
    4-aminopyridine
    ATP
    adenosine 3′5′ triphosphate
    MEM
    minimal essential medium
    NOS-IR
    nitric oxide synthase-like immunoreactivity
    • Received November 13, 1997.
    • Accepted April 17, 1998.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics
Vol. 286, Issue 2
1 Aug 1998
  • Table of Contents
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Effects of Nitric Oxide in Cultured Prevertebral Sympathetic Ganglion Neurons
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

Effects of Nitric Oxide in Cultured Prevertebral Sympathetic Ganglion Neurons

K. N. Browning, Z. L. Zheng, D. L. Kreulen and R. A. Travagli
Journal of Pharmacology and Experimental Therapeutics August 1, 1998, 286 (2) 1086-1093;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Research ArticleArticle

Effects of Nitric Oxide in Cultured Prevertebral Sympathetic Ganglion Neurons

K. N. Browning, Z. L. Zheng, D. L. Kreulen and R. A. Travagli
Journal of Pharmacology and Experimental Therapeutics August 1, 1998, 286 (2) 1086-1093;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Methods
    • Results
    • Discussion
    • Conclusions
    • Acknowledgment
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • CRV431 Decreases Liver Fibrosis and Tumor Development
  • Differential Effects of Mibefradil, Verapamil, and Amlodipine on Myocardial Function and Intracellular Ca2+ Handling in Rats with Chronic Myocardial Infarction
  • Response-Rate Suppression in Operant Paradigm as Predictor of Soporific Potency in Rats and Identification of Three Novel Sedative-Hypnotic Neuroactive Steroids
Show more Article

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics