Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
Research ArticleArticle

M2 Muscarinic Receptors Inhibit Forskolin- but not Isoproterenol-Mediated Relaxation in Bovine Tracheal Smooth Muscle

Rennolds S. Ostrom and Frederick J. Ehlert
Journal of Pharmacology and Experimental Therapeutics July 1998, 286 (1) 234-242;
Rennolds S. Ostrom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Frederick J. Ehlert
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The ability of the M2 muscarinic receptor to inhibit the relaxant effects of forskolin and isoproterenol was investigated in bovine trachea. In most experiments, we measured contractile responses to oxotremorine-M in smooth muscle isolated from bovine trachea in which a majority of M3 receptors were inactivated by treatment with N-(2-chloroethyl)-4-piperidinyl diphenylacetate. In the presence of histamine (20 μM), the histamine H2antagonist cimetidine (10 μM) and forskolin (4 μM), responses to oxotremorine-M were antagonized by [[2-[(diethylamino)methyl]-1-piperidinyl]acetyl]-5,11-dihydro-6H-pyrido[2,3b][1,4]benzodiazepine-6-one (1 μM) in a manner consistent with contractions mediated predominantly by M2 receptors. When similar experiments were conducted in the presence of isoproterenol (0.1 μM) instead of forskolin, contractions were antagonized in a manner consistent with an M3 receptor-mediated response. In similar experiments, we measured the relaxant potency of isoproterenol and forskolin against histamine-induced contractions in N-(2-chloroethyl)-4-piperidinyl diphenylacetate-treated trachea. By itself, oxotremorine-M (7.5 nM) had no contractile effect; however, it caused a substantial reduction in the relaxant potency of forskolin although having little effect on that of isoproterenol. These experiments establish that M2receptors inhibit the relaxant effects of forskolin, but not isoproterenol. In untreated tissues, the relaxant responses to isoproterenol and forskolin were 10.8- and 14.2-fold more potent, respectively, against histamine than against oxotremorine-M-induced contractions of equal magnitude. Similarly, the maximal stimulation of cAMP accumulation elicited by isoproterenol and forskolin was inhibited 58 and 62%, respectively, in the presence of oxotremorine-M (80 nM) compared to that measured in the presence of histamine (20 μM). Analysis of the data indicated that isoproterenol elicited relaxation at concentrations well beyond those that stimulated maximal levels of cAMP accumulation. Our results indicate that part of the relaxant response to isoproterenol is mediated through a non-cAMP-dependent mechanism, and that this mechanism is largely unopposed by the M2 receptor.

Footnotes

  • Send reprint requests to: Dr. Frederick J. Ehlert, Department of Pharmacology, College of Medicine, University of California, Irvine, Irvine, CA 92697.

  • ↵1 This work was supported by National Institutes of Health Grant NS 30882.

  • Abbreviations:
    cAMP
    adenosine 3′, 5′ cyclic monophosphate
    AF-DX 116
    [[2-[(diethylamino)methyl]-1-piperidinyl]acetyl]-5,11-dihydro-6H-pyrido[2,3b][1,4]benzodiazepine-6-one
    4-DAMP mustard
    N-(2-chloroethyl)-4-piperidinyl diphenylacetate
    IBMX
    isobutylmethylxanthine
    KRB buffer
    Krebs ringer bicarbonate buffer
    • Received October 29, 1997.
    • Accepted March 16, 1998.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics
Vol. 286, Issue 1
1 Jul 1998
  • Table of Contents
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
M2 Muscarinic Receptors Inhibit Forskolin- but not Isoproterenol-Mediated Relaxation in Bovine Tracheal Smooth Muscle
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Research ArticleArticle

M2 Muscarinic Receptors Inhibit Forskolin- but not Isoproterenol-Mediated Relaxation in Bovine Tracheal Smooth Muscle

Rennolds S. Ostrom and Frederick J. Ehlert
Journal of Pharmacology and Experimental Therapeutics July 1, 1998, 286 (1) 234-242;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
Research ArticleArticle

M2 Muscarinic Receptors Inhibit Forskolin- but not Isoproterenol-Mediated Relaxation in Bovine Tracheal Smooth Muscle

Rennolds S. Ostrom and Frederick J. Ehlert
Journal of Pharmacology and Experimental Therapeutics July 1, 1998, 286 (1) 234-242;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • PST3093 Stimulates SERCA2a and Improves Cardiac Function
  • CRV431 Decreases Liver Fibrosis and Tumor Development
  • Pharmacological Characterization of Nicotine-Induced Seizures in Mice
Show more Article

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics