Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
OtherNEUROPHARMACOLOGY

Mutation of a Highly Conserved Aspartate Residue in the Second Transmembrane Domain of the Cannabinoid Receptors, CB1 and CB2, Disrupts G-Protein Coupling

Qing Tao and Mary E. Abood
Journal of Pharmacology and Experimental Therapeutics May 1998, 285 (2) 651-658;
Qing Tao
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mary E. Abood
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The cannabinoid receptors, CB1 and CB2, are members of the G-protein coupled receptor family and share many of this family’s structural features. A highly conserved aspartic acid residue in the second transmembrane domain of G-protein coupled receptors has been shown for many of these receptors to be functionally important for agonist binding and/or G-protein coupling. To determine whether this residue is involved in cannabinoid receptor function, we used site-directed mutagenesis of receptor cDNA followed by expression of the mutant receptor in HEK 293 cells. Aspartate 163 (in CB1) and aspartate 80 (in CB2) were substituted with either asparagine or glutamate. Stably transfected cell lines were tested for radioligand binding and inhibition of cAMP accumulation. Binding of the cannabinoid receptor agonist [3H]CP-55,940 was not affected by either mutation in either the CB1 or CB2 receptor, nor were the affinities of anandamide or (−)-Δ9-tetrahydrocannabinol. Binding of the CB1-selective receptor antagonist SR141716A also was unaltered. However, the affinity of WIN 55,212–2 was attenuated significantly in the CB1, but not the CB2, mutant receptors. Studies examining inhibition of cAMP accumulation showed reduced effects of cannabinoid agonists in the mutated receptors. Our data suggest that this aspartate residue is not generally important for ligand recognition in the cannabinoid receptors; however, it is required for communication with G proteins and signal transduction.

Footnotes

  • Send reprint requests to: Dr. Mary E. Abood, Department of Pharmacology and Toxicology, Virginia Commonwealth University, P.O. Box 980524, Richmond, VA 23298-0524.

  • ↵1 This work was supported by National Institutes of Health grants DA-05274 and DA-09978 and the Council for Tobacco Research grant 4482.

  • Abbreviations:
    CB1
    central cannabinoid receptor
    CB2
    peripheral cannabinoid receptor
    GPCR
    G-protein-coupled receptor
    Δ9-THC
    (−)-Δ9-tetrahydrocannabinol
    CP-55
    940, (−)-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-4-[3-hydroxy propyl] cyclohexan-1-ol
    WIN-55
    212–2, (R)-(+)-[2,3-dihydro-5-methyl-3-[(4-morpholinyl)methyl]pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl](1-naphthalenyl)methanone
    SR141716A
    [N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamidehydrochloride]
    BSA
    bovine serum albumin
    TM2
    transmembrane domain 2
    DMEM
    Dulbecco’s modified Eagle’s medium
    CHO
    Chinese hamster ovary
    EDTA
    ethylenediaminetetraacetic acid
    HEPES
    N-2-hydroxyethylpiperazine-N′-2-ethanesulfonic acid
    ANOVA
    analysis of variance
    PCR
    polymerase chain reaction
    DMH
    dimethylheptyl
    • Received October 14, 1997.
    • Accepted January 21, 1998.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics
Vol. 285, Issue 2
1 May 1998
  • Table of Contents
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Mutation of a Highly Conserved Aspartate Residue in the Second Transmembrane Domain of the Cannabinoid Receptors, CB1 and CB2, Disrupts G-Protein Coupling
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
OtherNEUROPHARMACOLOGY

Mutation of a Highly Conserved Aspartate Residue in the Second Transmembrane Domain of the Cannabinoid Receptors, CB1 and CB2, Disrupts G-Protein Coupling

Qing Tao and Mary E. Abood
Journal of Pharmacology and Experimental Therapeutics May 1, 1998, 285 (2) 651-658;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
OtherNEUROPHARMACOLOGY

Mutation of a Highly Conserved Aspartate Residue in the Second Transmembrane Domain of the Cannabinoid Receptors, CB1 and CB2, Disrupts G-Protein Coupling

Qing Tao and Mary E. Abood
Journal of Pharmacology and Experimental Therapeutics May 1, 1998, 285 (2) 651-658;
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Substituted Tryptamine Activity at 5-HT Receptors and SERT
  • KRM-II-81 Analogs
  • VTA muscarinic M5 receptors and effort-choice behavior
Show more Neuropharmacology

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics