Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
OtherNEUROPHARMACOLOGY

Sodium Valproate Down-regulates the Myristoylated Alanine-Rich C Kinase Substrate (MARCKS) in Immortalized Hippocampal Cells: A Property of Protein Kinase C-Mediated Mood Stabilizers

David G. Watson, Jeannette M. Watterson and Robert H. Lenox
Journal of Pharmacology and Experimental Therapeutics April 1998, 285 (1) 307-316;
David G. Watson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jeannette M. Watterson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Robert H. Lenox
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Sodium valproate (VPA) is a short-chain fatty acid with well-established anticonvulsant properties and apparent clinical efficacy in the treatment of bipolar disorder (manic-depressive illness). Little is known regarding the mechanism of action of VPA in the brain that could account for this clinical therapeutic profile. Lithium has been the standard treatment for bipolar disorder, and it is known to be an uncompetitive inhibitor of inositol monophosphatase in the phosphoinositide (PI) signaling cascade at clinically relevant concentrations. Recent studies have provided data in support of a role for protein kinase C and the down-regulation of expression of the myristoylated alanine-rich C kinase substrate (MARCKS) in the long-term therapeutic action of lithium in the brain, which is dependent on both the relative activity of receptor-coupled PI signaling and the concentration of myo-inositol. Our current results demonstrated that valproate induces a concentration- and time-dependent reduction of MARCKS in immortalized hippocampal cells that appears to be independent of both the level of muscarinic receptor-activated PI signaling as well as the concentration of myo-inositol. In CHO-K1 cells transfected with the human m1 muscarinic receptor, unlike lithium, there is no evidence for receptor-mediated accumulation of CMP-PA in the presence of VPA, providing more direct data for its lack of interaction within the PI signaling cascade. The action of VPA on MARCKS occurs within the therapeutic concentrations and time course observed in clinical studies of patients with bipolar disorder. Furthermore, the effect on MARCKS protein is additive in the presence of therapeutic concentrations of both lithium and valproate, consistent with clinical observations regarding the enhanced efficacy of the combination treatment. Finally, in studies examining acute and chronic effects of a variety of psychotropic compounds and VPA structural analogs, it is evident that the property of regulation of MARCKS is shared by the mood-stabilizers lithium and VPA, which may be specific to a class of drugs effective in the treatment of bipolar disorder.

Footnotes

  • Send reprint requests to: Robert H. Lenox, M.D., Department of Psychiatry, Box 100256, JHM Health Science Center, University of Florida College of Medicine, Gainesville, FL 32610-0256.

  • ↵1 This work was supported in part by National Institute for Mental Health Grant RO1-MH56247-01 and by Abbott Laboratories.

  • Abbreviations:
    CMP-PA
    cytidine monophosphate-phosphatidic acid
    DAG
    diacylglycerol
    DMEM
    Dulbecco’s modified Eagle’s medium
    FBS
    fetal bovine serum
    IMPase
    myo-inositol-1-monophosphatase
    IP
    inositol phosphate
    MARCKS
    myristoylated alanine-rich C kinase substrate
    PI
    phosphoinositide
    PKC
    protein kinase C
    VPA
    valproate (sodium salt)
    2-PGA
    2-propylglutaric acid
    HVPA
    hydroxyvalproic acid
    • Received September 9, 1997.
    • Accepted December 29, 1997.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics
Vol. 285, Issue 1
1 Apr 1998
  • Table of Contents
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Sodium Valproate Down-regulates the Myristoylated Alanine-Rich C Kinase Substrate (MARCKS) in Immortalized Hippocampal Cells: A Property of Protein Kinase C-Mediated Mood Stabilizers
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
OtherNEUROPHARMACOLOGY

Sodium Valproate Down-regulates the Myristoylated Alanine-Rich C Kinase Substrate (MARCKS) in Immortalized Hippocampal Cells: A Property of Protein Kinase C-Mediated Mood Stabilizers

David G. Watson, Jeannette M. Watterson and Robert H. Lenox
Journal of Pharmacology and Experimental Therapeutics April 1, 1998, 285 (1) 307-316;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
OtherNEUROPHARMACOLOGY

Sodium Valproate Down-regulates the Myristoylated Alanine-Rich C Kinase Substrate (MARCKS) in Immortalized Hippocampal Cells: A Property of Protein Kinase C-Mediated Mood Stabilizers

David G. Watson, Jeannette M. Watterson and Robert H. Lenox
Journal of Pharmacology and Experimental Therapeutics April 1, 1998, 285 (1) 307-316;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Iclepertin (BI 425809) in schizophrenia-related models
  • D1 agonist vs. methylphenidate on PFC working memory
  • Obesity Thwarts Preconditioning in TBI
Show more Neuropharmacology

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2022 by the American Society for Pharmacology and Experimental Therapeutics