Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
OtherGASTROINTESTINAL PHARMACOLOGY

Site-Directed Mutagenesis of Human Vasoactive Intestinal Peptide Receptor Subtypes VIP1 and VIP2: Evidence for Difference in the Structure-Function Relationship

Pascal Nicole, Kai Du, Alain Couvineau and Marc Laburthe
Journal of Pharmacology and Experimental Therapeutics February 1998, 284 (2) 744-750;
Pascal Nicole
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kai Du
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Alain Couvineau
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Marc Laburthe
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Vasoactive intestinal peptide (VIP1 and VIP2) receptors belong to the new class II subfamily of G protein-coupled receptors. We investigated here human VIP1 and VIP2 receptors by mutating in their extracellular domains all amino acid residues that are conserved in VIP receptors but are different in other members of their subfamily. They are present in 1) the N-terminal domain, i.e., E36, I43, S64, D132 and F138 in the VIP1 receptor and E24, I31, S53, D116 and F122 in the VIP2 receptor; 2) the second extracellular loop, i.e., T288 and S292 in the VIP1 receptor and T274 and S278 in the VIP2 receptor. These residues were changed to alanine (A), and cDNAs were transfected into Cos cells. For the VIP1 receptor, no specific 125I-VIP binding could be detected in cells transfected with the E36A mutant, whereas other mutants exhibited Kd values similar to that of the wild-type receptor, with the exception of S64A, for which a 3-fold increase of Kd was observed. For the VIP2 receptor, no specific 125I-VIP binding could be observed with the E24A mutant, whereas other mutants exhibited dissociation constants similar to that of the wild-type receptor, with the exception of I31A and T274A mutants, for which a 11- and 5-fold increase of Kd was observed, respectively. cAMP production experiments provided evidence that the E36A VIP1 receptor and the E24A VIP2 receptor mutants mediated almost no response upon VIP exposure. For the I31A and T274A mutants of the VIP2 receptor and the S64A mutant of the VIP1 receptor, the EC50 values of VIP for stimulating cAMP production were increased 35, 8 and 3 times as compared with that observed for the wild-type receptor, respectively. Immunofluorescence studies indicated that all mutants were normally expressed by Cos cells. These data provide the first evidence for differences in the structure-function relationship of VIP1 and VIP2 receptors.

Footnotes

  • Send reprint requests to: Marc Laburthe, INSERM U410, Faculté de Médecine Xavier Bichat, B.P. 416, 75870 Paris, Cedex 18, France.

  • ↵1 This work was supported by Association pour la Recherche sur le Cancer (ARC N° 6404) and INSERM (Poste vert to K.D.).

  • Abbreviation:
    VIP
    vasoactive intestinal peptide
    • Received July 24, 1997.
    • Accepted October 9, 1997.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics
Vol. 284, Issue 2
1 Feb 1998
  • Table of Contents
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Site-Directed Mutagenesis of Human Vasoactive Intestinal Peptide Receptor Subtypes VIP1 and VIP2: Evidence for Difference in the Structure-Function Relationship
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
OtherGASTROINTESTINAL PHARMACOLOGY

Site-Directed Mutagenesis of Human Vasoactive Intestinal Peptide Receptor Subtypes VIP1 and VIP2: Evidence for Difference in the Structure-Function Relationship

Pascal Nicole, Kai Du, Alain Couvineau and Marc Laburthe
Journal of Pharmacology and Experimental Therapeutics February 1, 1998, 284 (2) 744-750;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
OtherGASTROINTESTINAL PHARMACOLOGY

Site-Directed Mutagenesis of Human Vasoactive Intestinal Peptide Receptor Subtypes VIP1 and VIP2: Evidence for Difference in the Structure-Function Relationship

Pascal Nicole, Kai Du, Alain Couvineau and Marc Laburthe
Journal of Pharmacology and Experimental Therapeutics February 1, 1998, 284 (2) 744-750;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • DISCUSSION
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Inhibitory Effect of Zinc Protoporphyrin IX on Lower Esophageal Sphincter Smooth Muscle Relaxation by Vasoactive Intestinal Polypeptide and Other Receptor Agonists
  • Characterization of the Histamine H2 Receptor Structural Components Involved in Dual Signaling
  • Stabilization of Vasoactive Intestinal Peptide by Lipids
Show more GASTROINTESTINAL PHARMACOLOGY

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics