Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
OtherCELLULAR AND MOLECULAR PHARMACOLOGY

Regulation of K+ and Ca++ Channels by a Family of Neuropeptide Y Receptors

Lihjen Sun, Louis H. Philipson and Richard J. Miller
Journal of Pharmacology and Experimental Therapeutics February 1998, 284 (2) 625-632;
Lihjen Sun
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Louis H. Philipson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Richard J. Miller
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

We examined the ability of rat Y1, Y2 and Y4 neuropeptide Y (NPY) receptors to regulate K+ and Ca++ channels expressed in Xenopus oocytes and HEK 293 cells, respectively. Stimulation of all three receptors with NPY or related peptides activated inwardly rectifying K+ currents resulting from the expression of rat GIRK1/CIR in frog oocytes. These effects were inhibited by pertussis toxin treatment. The effects of activating Y1 receptors were antagonized competitively by BIBP3226, SR120819A and GW1229. The effects of Y2 receptor activation were not blocked by these drugs, and the effects of Y4 receptor activation were only blocked by GW1229. Activation of all three NPY receptors also inhibited human alpha-1B Ca++ channels stably expressed in HEK293 cells. The effects of agonists at all three receptors were blocked by pertussis toxin treatment and were voltage dependent. Activation of all three types of NPY receptors produced much smaller inhibition of human alpha-1E Ca++channels also stably expressed in HEK293 cells. These results suggest that NPY receptors can regulate K+ and Ca++channels and that these effects may be responsible for the observed effects of NPY on neuronal excitability and synaptic transmission.

Footnotes

  • Send reprint requests to: Richard J. Miller, Ph.D., Department of Pharmacological and Physiological Sciences, The University of Chicago, 947 E. 58th Street (MC 0926), Chicago, IL 60637.

  • ↵1 Supported by PHS grants DA-02121, MH-40165, DA-02575, DK-42086, DK-44840 and NS-33502 from the National Institutes of Health.

  • Abbreviations:
    NPY
    neuropeptide Y
    PYY
    peptide YY
    PP
    pancreatic polypeptide
    PTX
    pertussis toxin
    HEPES
    N-2-hydroxyethylpiperazine-N′-2-ethanesulfonic acid
    TEA
    tetraethylammonium
    • Received July 21, 1997.
    • Accepted October 30, 1997.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics
Vol. 284, Issue 2
1 Feb 1998
  • Table of Contents
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Regulation of K+ and Ca++ Channels by a Family of Neuropeptide Y Receptors
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
OtherCELLULAR AND MOLECULAR PHARMACOLOGY

Regulation of K+ and Ca++ Channels by a Family of Neuropeptide Y Receptors

Lihjen Sun, Louis H. Philipson and Richard J. Miller
Journal of Pharmacology and Experimental Therapeutics February 1, 1998, 284 (2) 625-632;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
OtherCELLULAR AND MOLECULAR PHARMACOLOGY

Regulation of K+ and Ca++ Channels by a Family of Neuropeptide Y Receptors

Lihjen Sun, Louis H. Philipson and Richard J. Miller
Journal of Pharmacology and Experimental Therapeutics February 1, 1998, 284 (2) 625-632;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Inhibition of Voltage-Dependent Sodium Channels by the Anticonvulsant γ-Aminobutyric Acid Type A Receptor Modulator, 3-Benzyl-3-Ethyl-2-Piperidinone
  • Antagonism of an Adenosine/ATP Receptor in FollicularXenopus Oocytes
  • Toxin and Subunit Specificity of Blocking Affinity of Three Peptide Toxins for Heteromultimeric, Voltage-Gated Potassium Channels Expressed in Xenopus Oocytes
Show more CELLULAR AND MOLECULAR PHARMACOLOGY

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics