Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
OtherDRUG METABOLISM AND DISPOSITION

The In Vitro Hepatic Metabolism of Quinine in Mice, Rats and Dogs: Comparison with Human Liver Microsomes

Xue-Jun Zhao and Takashi Ishizaki
Journal of Pharmacology and Experimental Therapeutics December 1997, 283 (3) 1168-1176;
Xue-Jun Zhao
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Takashi Ishizaki
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The major metabolic pathway of quinine in the human has been shown to be 3-hydroxylation mediated mainly by human cytochrome P450 (CYP) 3A4. In this extended in vitro study, quinine 3-hydroxylation was further investigated using microsomes from mouse, rat, dog and human livers and was compared among them in terms of thein vitro enzyme-kinetic parameters and quinine-drug interaction screenings. In all species, 3-hydroxyquinine was the principal metabolite of quinine. There was intra- and interspecies variability among all the kinetic parameters, and dogs exhibited a closer resemblance to humans in terms of the mean kinetic data. Ketoconazole and troleandomycin inhibited the 3-hydroxylation of quinine in all species. Both α-naphthoflavone and diazepam showed an interspecies difference in quinine 3-hydroxylation: a trend toward an activation in dog and human, and a significant inhibition in mouse and rat, liver microsomes. Antisera raised against rat CYP3A2 strongly inhibited quinine 3-hydroxylation by about 96, 84 and 92% with mouse, rat and dog liver microsomes, respectively, but neither anti-rat 2C11 and 2E1 antisera did so with rat liver microsomes. Primaquine, doxycycline and tetracycline substantially inhibited the formation of 3-hydroxyquinine in rat, dog and human species, but proguanil had no such effect in any species. Chloroquine inhibited quinine 3-hydroxylation with rat and dog liver microsomes but not with human liver microsomes. There was a significant correlation (r = 0.986, P < .001) between the CYP3A contents and the formation rates of 3-hydroxyquinine in eight human liver microsomal samples. It is concluded that 3-hydroxyquinine is a main metabolite of quinine and that CYP3A/Cyp3a is a principal isoform involved in this metabolic pathway in the respective (rat, dog and human/mouse) species tested. The dog and possibly the rat may be qualitatively and quantitatively suitable animal models for exploring the quinine 3-hydroxylase activity and for screening quinine-drug interactions in vitro, at certain inconsistency with the human liver microsomal data.

Footnotes

  • Send reprint requests to: Takashi Ishizaki, M.D., Ph.D., Department of Clinical Pharmacology, Research Institute, International Medical Center of Japan, 1-21-2 Toyama, Shinjuku-ku, Tokyo 162, Japan.

  • ↵1 This study was supported by a grant-in-aid from the Ministry of Human Health and Welfare and by a postdoctoral fellowship training program from the Bureau of International Cooperation, International Medical Center of Japan, Tokyo, Japan.

  • Abbreviations:
    CYP or P450
    cytochrome P450
    TAO
    troleandomycin
    • Received May 16, 1997.
    • Accepted August 14, 1997.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics
Vol. 283, Issue 3
1 Dec 1997
  • Table of Contents
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
The In Vitro Hepatic Metabolism of Quinine in Mice, Rats and Dogs: Comparison with Human Liver Microsomes
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
OtherDRUG METABOLISM AND DISPOSITION

The In Vitro Hepatic Metabolism of Quinine in Mice, Rats and Dogs: Comparison with Human Liver Microsomes

Xue-Jun Zhao and Takashi Ishizaki
Journal of Pharmacology and Experimental Therapeutics December 1, 1997, 283 (3) 1168-1176;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
OtherDRUG METABOLISM AND DISPOSITION

The In Vitro Hepatic Metabolism of Quinine in Mice, Rats and Dogs: Comparison with Human Liver Microsomes

Xue-Jun Zhao and Takashi Ishizaki
Journal of Pharmacology and Experimental Therapeutics December 1, 1997, 283 (3) 1168-1176;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Novel Single-Point Plasma or Saliva Dextromethorphan Method for Determining CYP2D6 Activity
  • A New Interpretation of Salicylic Acid Transport across the Lipid Bilayer: Implications of pH-Dependent but not Carrier-Mediated Absorption from the Gastrointestinal Tract
  • Characterization of Efflux Transport of Organic Anions in a Mouse Brain Capillary Endothelial Cell Line
Show more DRUG METABOLISM AND DISPOSITION

Similar Articles

  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics