Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Special Sections
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Submit
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
OtherCARDIOVASCULAR PHARMACOLOGY

Carvedilol, a Multiple-Action Neurohumoral Antagonist, Inhibits Mitogen-Activated Protein Kinase and Cell Cycle Progression in Vascular Smooth Muscle Cells

Cheng-Po Sung, Anthony J. Arleth, Christopher Eichman, Alem Truneh and Eliot H. Ohlstein
Journal of Pharmacology and Experimental Therapeutics November 1997, 283 (2) 910-917;
Cheng-Po Sung
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Anthony J. Arleth
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Christopher Eichman
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Alem Truneh
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Eliot H. Ohlstein
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Recent findings that the multiple-action neurohumoral antagonist carvedilol inhibits the mitogenic effects of a broad variety of mitogens and produces marked protection against neointima formation after balloon angioplasty injury prompted further study into the molecular and biochemical mechanism of action. In the present study, the effects of carvedilol on mitogen-activated protein (MAP) kinase activity and cell cycle progression were evaluated. Carvedilol produced significant concentration-dependent inhibition of mitogen-induced MAP kinase activity in rat smooth muscle cells. Furthermore, when MAP kinase was purified from mitogen-stimulated cells by FPLC Mono Q chromatography, carvedilol produced direct enzyme inhibition. In the cell-free assay, carvedilol (10 μM) produced 50% inhibition of MAP kinase activity. Cell flow cytometry studies revealed that quiescent rat aortic smooth muscle cells showed 96% of the cell population in the G0/G1 phase of the cell cycle. The addition of serum (10%) increased the number of cells in S and G2/M phases 20% to 40%, respectively. Carvedilol (10 μM) significantly decreased (30–50%) the number of cells in S and G2/M phase. In addition, carvedilol significantly inhibited (>70%) serum-induced stimulation of the S phase-specific marker thymidine kinase. These data suggest that the antimitogenic actions of carvedilol on vascular smooth muscle may be in part due to the inhibition of MAP kinase activity and regulation of cell cycle progression.

Footnotes

  • Send reprint requests to: Dr. Eliot H. Ohlstein, Director, Department of Cardiovascular Pharmacology, UW2511, SmithKline Beecham Pharmaceuticals, King of Prussia, PA 19406-0939.

  • Abbreviations:
    MAP
    mitogen-activated protein
    PDGF
    platelet-derived growth factor
    DMEM
    Dulbecco’s modified Eagle’s medium
    PMA
    phorbol-12-myristate-13-acetate
    PBS
    phosphate-buffered saline
    PAGE
    polyacrylamide gel electrophoresis
    • Received February 25, 1997.
    • Accepted July 22, 1997.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics
Vol. 283, Issue 2
1 Nov 1997
  • Table of Contents
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Carvedilol, a Multiple-Action Neurohumoral Antagonist, Inhibits Mitogen-Activated Protein Kinase and Cell Cycle Progression in Vascular Smooth Muscle Cells
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
OtherCARDIOVASCULAR PHARMACOLOGY

Carvedilol, a Multiple-Action Neurohumoral Antagonist, Inhibits Mitogen-Activated Protein Kinase and Cell Cycle Progression in Vascular Smooth Muscle Cells

Cheng-Po Sung, Anthony J. Arleth, Christopher Eichman, Alem Truneh and Eliot H. Ohlstein
Journal of Pharmacology and Experimental Therapeutics November 1, 1997, 283 (2) 910-917;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Share
OtherCARDIOVASCULAR PHARMACOLOGY

Carvedilol, a Multiple-Action Neurohumoral Antagonist, Inhibits Mitogen-Activated Protein Kinase and Cell Cycle Progression in Vascular Smooth Muscle Cells

Cheng-Po Sung, Anthony J. Arleth, Christopher Eichman, Alem Truneh and Eliot H. Ohlstein
Journal of Pharmacology and Experimental Therapeutics November 1, 1997, 283 (2) 910-917;
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Preconditioning of Rat Heart with Monophosphoryl Lipid A: A Role for Nitric Oxide
  • TAS-301, an Inhibitor of Smooth Muscle Cell Migration and Proliferation, Inhibits Intimal Thickening after Balloon Injury to Rat Carotid Arteries
  • Identification of Low Molecular Weight GP IIb/IIIa Antagonists That Bind Preferentially to Activated Platelets
Show more CARDIOVASCULAR PHARMACOLOGY

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2023 by the American Society for Pharmacology and Experimental Therapeutics