Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Pharmacology and Experimental Therapeutics
  • Other Publications
    • Drug Metabolism and Disposition
    • Journal of Pharmacology and Experimental Therapeutics
    • Molecular Pharmacology
    • Pharmacological Reviews
    • Pharmacology Research & Perspectives
    • ASPET
  • My alerts
  • Log in
  • My Cart
Journal of Pharmacology and Experimental Therapeutics

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Fast Forward
    • Latest Articles
    • Archive
  • Information
    • Instructions to Authors
    • Submit a Manuscript
    • FAQs
    • For Subscribers
    • Terms & Conditions of Use
    • Permissions
  • Editorial Board
  • Alerts
    • Alerts
    • RSS Feeds
  • Virtual Issues
  • Feedback
  • Visit jpet on Facebook
  • Follow jpet on Twitter
  • Follow jpet on LinkedIn
OtherCELLULAR AND MOLECULAR PHARMACOLOGY

Role of Rho Protein in Lovastatin-Induced Breakdown of Actin Cytoskeleton

G. Koch, C. Benz, G. Schmidt, C. Olenik and K. Aktories
Journal of Pharmacology and Experimental Therapeutics November 1997, 283 (2) 901-909;
G. Koch
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C. Benz
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
G. Schmidt
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C. Olenik
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K. Aktories
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The Rho GTPases are involved in actin cytoskeleton organization and signal transduction. They need polyisoprenylation for membrane association and activation. Lovastatin, a hydroxymethylglutaryl coenzyme A inhibitor, prevents isoprene synthesis and thereby lipid modification of the Rho protein carboxy terminus. Because lovastatin causes rounding up of cultured cells, we investigated whether the compound acts on the actin cytoskeleton through Rho proteins. Lovastatin treatment decreased F-actin content in a time- and concentration-dependent manner. G-actin content remained unchanged. In lovastatin-treated NIH 3T3 cells, the amount of Rho protein which was ADP-ribosylated by Clostridium botulinum exoenzyme C3 decreased in membranes and increased in the cytosol fraction. Cycloheximide prevented lovastatin-induced rounding up of cells. However, after microinjection or direct application of exoenzyme C3, cells treated with cycloheximide and lovastatin rounded up again. On the contrary, lovastatin-treated, round Swiss 3T3 cells reverted to a flat morphology when microinjected with dominant active RhoA (Val14RhoA). Escherichia coli cytotoxic necrotizing factor (CNF1) which activates Rho proteins caused flattening of round, lovastatin-treated NIH 3T3 cells. These results suggest that lovastatin affects the actin cytoskeleton through inactivation of Rho proteins.

Footnotes

  • Send reprint requests to: Dr. K. Aktories, Institut für Pharmakologie und Toxikologie, Universität Freiburg, Hermann-Herder-Str. 5, D-79104 Freiburg, Germany.

  • ↵1 This work was supported by the Deutsche Forschungsgemeinschaft.

  • ↵2 Present address: Psychiatrische Klinik Rheinau, CH-8462 Rheinau, Switzerland.

  • Abbreviations:
    CNF1 and 2
    Escherichia colicytotoxic necrotizing factor 1 and 2
    F-actin
    filamentous actin
    G-actin
    globular actin
    GTPase
    guanosine 5′-triphosphate hydrolase
    HMG-CoA
    hydroxymethylglutaryl coenzyme A
    MVA
    mevalonic acid
    NAD
    nicotinamide adenine dinucleotide
    NBD-phalloidin
    (7-nitrobenz-2-oxa-1,3-diazol-4-yl)phalloidin
    RhoGDI
    Rho guanosine nucleotide dissociation inhibitor
    SDS-PAGE
    sodium dodecyl sulfate-polyacrylamide gel electrophoresis
    S.E.M.
    standard error of the mean
    • Received February 10, 1997.
    • Accepted July 7, 1997.
  • The American Society for Pharmacology and Experimental Therapeutics
View Full Text

JPET articles become freely available 12 months after publication, and remain freely available for 5 years. 

Non-open access articles that fall outside this five year window are available only to institutional subscribers and current ASPET members, or through the article purchase feature at the bottom of the page. 

 

  • Click here for information on institutional subscriptions.
  • Click here for information on individual ASPET membership.

 

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Pharmacology and Experimental Therapeutics
Vol. 283, Issue 2
1 Nov 1997
  • Table of Contents
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Journal of Pharmacology and Experimental Therapeutics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Role of Rho Protein in Lovastatin-Induced Breakdown of Actin Cytoskeleton
(Your Name) has forwarded a page to you from Journal of Pharmacology and Experimental Therapeutics
(Your Name) thought you would be interested in this article in Journal of Pharmacology and Experimental Therapeutics.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
OtherCELLULAR AND MOLECULAR PHARMACOLOGY

Role of Rho Protein in Lovastatin-Induced Breakdown of Actin Cytoskeleton

G. Koch, C. Benz, G. Schmidt, C. Olenik and K. Aktories
Journal of Pharmacology and Experimental Therapeutics November 1, 1997, 283 (2) 901-909;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
OtherCELLULAR AND MOLECULAR PHARMACOLOGY

Role of Rho Protein in Lovastatin-Induced Breakdown of Actin Cytoskeleton

G. Koch, C. Benz, G. Schmidt, C. Olenik and K. Aktories
Journal of Pharmacology and Experimental Therapeutics November 1, 1997, 283 (2) 901-909;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results
    • Discussion
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Inhibition of Voltage-Dependent Sodium Channels by the Anticonvulsant γ-Aminobutyric Acid Type A Receptor Modulator, 3-Benzyl-3-Ethyl-2-Piperidinone
  • Antagonism of an Adenosine/ATP Receptor in FollicularXenopus Oocytes
  • Toxin and Subunit Specificity of Blocking Affinity of Three Peptide Toxins for Heteromultimeric, Voltage-Gated Potassium Channels Expressed in Xenopus Oocytes
Show more CELLULAR AND MOLECULAR PHARMACOLOGY

Similar Articles

Advertisement
  • Home
  • Alerts
Facebook   Twitter   LinkedIn   RSS

Navigate

  • Current Issue
  • Fast Forward by date
  • Fast Forward by section
  • Latest Articles
  • Archive
  • Search for Articles
  • Feedback
  • ASPET

More Information

  • About JPET
  • Editorial Board
  • Instructions to Authors
  • Submit a Manuscript
  • Customized Alerts
  • RSS Feeds
  • Subscriptions
  • Permissions
  • Terms & Conditions of Use

ASPET's Other Journals

  • Drug Metabolism and Disposition
  • Molecular Pharmacology
  • Pharmacological Reviews
  • Pharmacology Research & Perspectives
ISSN 1521-0103 (Online)

Copyright © 2021 by the American Society for Pharmacology and Experimental Therapeutics